Given: \(l=2 \mathrm{~m}, \mathrm{n}_{1}=\mathrm{n}_{2}=100, \mathrm{r}_{1}=7 \mathrm{~cm}=7 \times 10^{-2} \mathrm{~m}\), and \(\mathrm{r}_{2}=14 \mathrm{~cm}=14 \times 10^{-2} \mathrm{~m}\)
We know that, if there are two solenoids of equal length and one solenoid is placed coaxially inside the other solenoid then the mutual inductance of solenoid 1 with respect to solenoid 2 will be equal to the mutual inductance of solenoid 2 with respect to solenoid 1.
The mutual inductance of both the solenoids is given as,
\(\mathrm{M}_{12}=\mathrm{M}_{21}=\mathrm{M}=\mu_{0} \mathrm{n}_{1} \mathrm{n}_{2} \pi \mathrm{r}_{1}^{2} l \quad \cdots\) (1)
Where, \(n_{1}=\) number of turns per unit length of solenoid 1, \(\mathrm{n}_{2}=\) number of turns per unit length of solenoid 2, \(r_{1}=\) radius of the inner solenoid, and \(l=\) length of both the solenoids
By equation (1) the mutual inductance of both solenoids is given as,
\(\mathrm{M}=\mu_{0} \mathrm{n}_{1} \mathrm{n}_{2} \pi \mathrm{r}_{1}^{2}{l}\)
\(\Rightarrow \mathrm{M}=\mu_{0} \mathrm{n}_{1} \mathrm{n}_{2} \pi \mathrm{r}_{1}^{2} \mathrm{l} \times \frac{4 \pi}{4 \pi}\)
\(\Rightarrow \mathrm{M}=\frac{\mu_{0}}{4 \pi} \times 4 \pi^{2} \mathrm{n}_{1} \mathrm{n}_{2} \mathrm{r}_{1}^{2} l \quad \cdots\) (2)
We know that,
\(\frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{T}\frac{\mathrm{m}}{\mathrm{A}} \quad \cdots\) (3)
By equation (2) and equation (3),
\(\mathrm{M}=10^{-7} \times \frac{22}{7} \times \frac{22}{7} \times 100 \times 100 \times\left(7 \times 10^{-2}\right)^{2} \times 2\)
\(\Rightarrow \mathrm{M}=9.68 \times 10^{-5} \mathrm{H}\)
Hence, the correct option is (C).