For transition metal elements, a general rule is $$\Rightarrow The\ max\ number\ of\ oxidation\ states = no. \ unpaired\ d-orbital\ electrons\ + \ the\ 2s\ electrons.$$
Explanation:
As noted, the maximum number of oxidation states a given transition metal is (generally) the number of unpaired $$d$$-orbitals plus the $$2\ s$$-orbital electrons. This then finds the transition elements with the higher numbers of oxidation states in the middle of the transition series.
For the question presented and written in order of Aufbau Diagram:
$$4s^1 3d^5 \Rightarrow 4s\uparrow 3d\uparrow \uparrow \uparrow \uparrow \uparrow 4s\uparrow 3d\uparrow \uparrow \uparrow \uparrow \uparrow \Rightarrow 6\ oxidation\ states$$
$$4s^2 3d^5 4s^2 3d^5 \Rightarrow 4s\uparrow \downarrow 3d\uparrow \uparrow \uparrow \uparrow \uparrow 4s\uparrow \downarrow 3d\uparrow \uparrow \uparrow \uparrow \uparrow \Rightarrow 7\ oxidation\ states$$
$$4s^2 3d^2 \Rightarrow 4s\uparrow \downarrow 3d\uparrow \uparrow 4s\uparrow \downarrow 3d\uparrow \uparrow \Rightarrow 4\ oxidation\ states$$
$$4s^2 3d^3 \Rightarrow 4s\uparrow \downarrow 3d\uparrow \uparrow \uparrow 4s\uparrow \downarrow 3d\uparrow \uparrow \uparrow \Rightarrow 5\ oxidation\ states$$
Example:
Iron has $$4$$ unpaired electrons and $$2$$ paired electrons. To find one of its oxidation states, we can use the formula:
Oxidation State of $$Fe = 4 + 2 = +6$$
Indeed, $$+6$$ is one of the oxidation states of iron, but it is very rare. Other possible oxidation states for iron includes: $$+5,\ +4,\ +3,$$ and $$+2.$$
Here are some oxidation states of elements in the $$1st$$ Transition Series