Self Studies

Perimeter and Area Test - 12

Result Self Studies

Perimeter and Area Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The difference in the area of a square of perimeter $$88$$ m and a circle with same circumference is
    Solution
    Perimeter of $$sq=88 cm$$
    $$\displaystyle \therefore $$ side of $$sq = 22 cm$$
    $$\displaystyle \Rightarrow $$ area of sq $$\displaystyle =484  cm^{2}$$
    $$\displaystyle C=2\pi r=88\Rightarrow r=14$$
    $$\displaystyle \therefore Area=\dfrac{22}{7}\times 14\times 14=616cm^{2}$$
    Difference in the areas $$\displaystyle =616-484=132  cm^{2}$$
  • Question 2
    1 / -0
    The ratio of the outer and inner circumferences of a circular path is $$23:22$$, If the path is $$5\ m$$ wide, the radius of the inner circle is: 
    Solution
    Let R and r be the outer and inner radii of the circular path.
    Given that,
    $$\frac{2\pi R}{2\pi r}=\frac{23}{22}$$
    $$=>\frac{R}{r}=\frac{23}{22}$$
    Let $$R=23x$$ and $$r=22x$$
    It is given that the width of the path is $$5$$m wide
    $$\therefore R-r=5$$m
    $$=>23x-22x=5$$
    $$=>x=5$$
    $$\therefore$$ the inner radius of the circle is
    $$=22\times 5$$
    $$=110$$m

  • Question 3
    1 / -0
    The radius of a circle whose area is equal to the sum of the areas of two circles of radii 3 cm and 4 cm is
    Solution
    The area of circle $$C_1$$ whose radius is $$4\ cm =\pi (4)^{2}$$

                                                                              $$=16\pi $$ sq cm

    And the area of circle $$C_2$$ whose radius is $$3\ cm = \pi (3)^{2}$$

                                                                                      $$=9\pi $$ sq cm 

    Given: Area of the new circle is equal to the sum of areas of circles $$C_1$$ and $$C_2$$

    Let the radius of the new circle be $$R$$ cm

    Area of big circle $$=16\pi +9\pi =25\pi $$ sq cm 

    $$\Rightarrow$$                 $$\pi R^{2}=25\pi$$

    $$ \Rightarrow$$                    $$R^{2}=25$$

    $$\Rightarrow$$                     $$R=5$$ cm

    So the radius of the new circle $$=5$$ cm
  • Question 4
    1 / -0
    Area of a square 625 sq m. Then the measure of its side is
    Solution
    We know that,
    Area$$=side\times side$$
    $$s \displaystyle \times  s \displaystyle=  625 \displaystyle m^{2} $$
    $$ s \displaystyle \times  s \displaystyle =  25 \displaystyle \times 25$$  $$\displaystyle= $$ 625 $$\displaystyle m^{2} $$
    $$s \displaystyle =  25\ m$$
  • Question 5
    1 / -0
    The radius of a circle whose area is equal to the sum of the areas of two circles of radii are  5 cm and 12 cm is
    Solution
    Given two circle radii are $$5 cm$$ and $$12 cm$$
    Then,
    Area of circle of radius 5 cm $$=$$$$\pi r^{2}=\pi (5)^{2}=25\pi $$ sq cm
    Area of circle of radius 12 cm $$=$$$$\pi r^{2}=\pi (12)^{2}=144\pi $$sq cm
    So area of circle whose area is equal to sum of areas of two circles$$=$$$$25\pi +144\pi =169\pi $$ sq cm
    Let the radius of the bigger circle be $$=$$R cm
    $$\therefore \pi R^{2}=169\pi$$
    $$\Rightarrow R^{2}=169$$
    $$\Rightarrow R=13 cm$$
  • Question 6
    1 / -0
    Find the perimeter of a circle whose radius is 7 cm (in cm)

    Solution
    Perimeter of a circle $$ = 2\pi r $$, where r is the radius of the circle

    So, perimeter of the given circle $$ = 2 \times \pi \times 7 = 14 \pi $$
  • Question 7
    1 / -0
    If the area of the circle be $$ \displaystyle 154 \text{ cm}^{2},$$ then its radius is equal to:
    Solution
    Area of the circle $$=154\displaystyle \text{ cm}^{2}$$
    $$\because $$ Area $$=\displaystyle \pi r^{2}$$
    $$\therefore \pi r^2=154$$
    $$\Rightarrow$$ $$\displaystyle r^{2}=\frac{154\times 7}{22}$$
    $$ \Rightarrow r^2 = \displaystyle 7\times 7$$
    $$\displaystyle \Rightarrow r=7\text{ cm}$$
  • Question 8
    1 / -0
    If the circumference of a circle be $$8.8 \text{ m}$$ then its radius is equal to -
    Solution
    Circumference of a circle, $$\displaystyle  C=2\pi r $$
    or $$\displaystyle  r=\frac{C}{2\pi } $$
    $$=\displaystyle  \frac{8.8\times 7}{2\times 22} $$ $$= 1.4 \text{ m}$$
  • Question 9
    1 / -0
    If the radius of a circle be $$r$$ $$ cm$$, then its area will be equal to-
    Solution
    If radius is $$r $$ $$cm$$, then $$area=\pi r^2\,\, cm^2 $$.
    Option B is correct.

  • Question 10
    1 / -0
    What is the circumference of a circle whose radius is 8 cm?
    Solution
    Circumference=$$\displaystyle  2\pi r$$
    =$$\displaystyle  2\times \pi \times 8$$
    =16$$\displaystyle  \pi $$ cm
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now