Self Studies

Perimeter and Area Test - 18

Result Self Studies

Perimeter and Area Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If area of circular field is $$6.16 \text{ m}^2$$, then its diameter will be
    Solution
    Area of circular field $$=6.16\,\text{m}^2$$

    Area of a circle $$=\pi r^2$$

    $$\Rightarrow$$  $$6.16=\dfrac{22}{7}\times r^2$$

    $$\Rightarrow$$  $$6.16\times \dfrac{7}{22}=r^2$$

    $$\Rightarrow$$  $$r^2=\dfrac{43.12}{22}$$

    $$\Rightarrow$$  $$r^2=1.96$$

    $$\Rightarrow$$  $$r=1.4\,\text{m}$$

    $$\Rightarrow$$  $$d=2r=1.4\times 2=2.8\text{ m}$$

    $$\therefore$$  The diameter of a circular field is $$2.8\,\text{m}.$$
  • Question 2
    1 / -0
    A circular grassy plot of land, $$42\ m$$ in diameter, has a path $$3.5\ m$$ wide running round it on the outside. Find the cost of gravel ling the path at Rs. $$4$$ per square metre.
    Solution
    We have, Radius of the plot $$ = 21\ m$$
    Radius of plot including the path $$ = 21 + 3.5 = 24.5\ m$$
    Area of the path $$ = \pi (24.5^2) - \pi (21^2)$$
    $$ = \pi(24.5^2 - 21^2)$$
    $$ = \pi (24.5 - 21) (24.5 + 21)$$
    $$ = \cfrac {22}{7} \times 3.5\times 45.5$$
    $$ = 500.5\ m^2$$
    Total cost of gravelling the path $$ = 500.5\times 4$$
    $$ =$$ Rs. $$2002$$

  • Question 3
    1 / -0
    The circumference of a circular ground is $$88$$ metres. A strip of land, $$3$$ metres wide, inside and along circumference of the ground is to be levelled. What is the budgeted expenditure if the levelling costs Rs. $$7$$ per square metre?
    Solution
    Circumference of ground $$ = 88\ m$$
    $$\Rightarrow 2\pi r = 88$$
    $$\Rightarrow r = 14\ m$$       ....take $$\pi = \dfrac{22}{7}$$
    Area of strip to be levelled $$ = $$ Area of ground $$-$$ Area of inner circle
    $$ = \pi 14^2 - \pi 11^2$$
    $$ = 235.72\ m^2$$      ....take $$\pi = \dfrac{22}{7}$$
    Total cost of levelling the strip (if the cost of levelling $$1\ m^2$$ is Rs. $$7$$) $$ = 235.72\times 7$$
    $$ =$$ Rs. $$1650$$

  • Question 4
    1 / -0
    A flooring tile has the shape of a parallelogram whose base is $$24\: cm$$ and the corresponding height is $$10\: cm$$. How many such tiles are required to cover a floor of area $$1080$$ $$m^2$$? 
    Solution
    Area of the parallelogram $$=$$ Base$$\times $$Height

    So area of each tile $$=24\times 10=240 \:cm^2$$

    Area of the floor $$=1080 \: m^2=(1080\times 100\times 100)  \: cm^2$$

    $$\therefore$$ Required number of tiles $$=\dfrac{\text{Area of the floor}}{\text{Area of each tile}}=\dfrac{10800000}{240}=45000$$
  • Question 5
    1 / -0
    The adjacent sides of a parallelogram are 10 cm and 12 cm. The diagonal joining the ends of these sides is 14 cm. Its area is
    Solution

    Area of the parallelogram $$ABCD=2\times \text{ area } \triangle BCD$$

    Now, in $$\triangle BCD$$
    $$S=\dfrac { 12+10+14 }{ 2 } =18\text{ cm}$$

    Area of $$\triangle BCD=\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  }$$ 
                                $$=\sqrt { 18\left( 18-12 \right) \left( 18-10 \right) \left( 18-14 \right)  } $$
                                $$=\sqrt { 18\times 6\times 8\times 4 } $$
                                $$=\sqrt { 3\times 6\times 6\times 2\times 4\times 4 } $$
                                $$=4\times 6\sqrt { 6 } $$
                                $$=24\sqrt { 6 } \text{ cm}^{ 2 }$$

    $$\therefore $$ Area of the parallelogram $$ABCD=2\times 24\sqrt { 6 } =48\sqrt { 6 } \text{ cm}^{ 2 }$$

  • Question 6
    1 / -0
    The cost of fencing a circular field at the rate of $$Rs\:.240\: per\: metre$$ is $$Rs. \: 52,800$$ . The field is to be ploughed at the rate of $$Rs. 12.50 \: per \: m^{2}$$. Find the cost of ploughing the field.
    Solution
    Cost of fencing at the rate of Rs.$$240$$ per meter=$$Rs.52800$$
    Therefore,
    Circumference=$$\dfrac{52800}{240}$$ = $$220$$

    Let r be the radius of the field
    Therefore,
    $$2\pi r=220$$

    $$\Rightarrow r=\dfrac{220\times 7}{2\times 22}$$

    $$\Rightarrow r=35$$

    Therefore,
    Area of the field=$$\pi r^2$$
                             
                             =$$\dfrac{22}{7}\times 35\times 35$$
                             
                             =$$3850 m^2$$

    Cost of fencing the field = $$12.5\times 3850$$
                                         
                                             =$$Rs.48125$$
  • Question 7
    1 / -0
    The circumference of a circular field is $$308\:m$$ . Find its area.
    Solution
    Let the radius of the circle be $$r$$ cm
    Circumference of the circle=$$308$$
    Therefore,
    $$2\pi r=308$$
    $$=>r=\dfrac{308\times 7}{2\times 22}$$
    $$=>r=49m$$
    Therefore,
    Area of the circle=$$\pi \times (49)^2$$
                               =$$\frac{22}{7}\times 2401$$
                               =$$7546m^2$$
  • Question 8
    1 / -0
    The diameter of a circle is $$28 \:cm$$. Find its area.
    Solution
    The diameter of a circle is $$28cm$$

    Therefore,
    Radius of the circle=$$\dfrac{28}{2}=14cm$$

    Therefore,
    Area of the circle=$$\pi (14)^2$$
                          
                                 =$$\dfrac{22}{7}\times196$$
                             
                                 =$$616cm^2$$
  • Question 9
    1 / -0

    Directions For Questions

    The shaded region of the given diagram represents the lawn in the form of a house.
    On the three sides of the lawn there are flower-beds having a uniform width of 2 m.

    ...view full instructions

    Find the length and the breadth of the lawn.

    Solution
    Since, in the given figure
    Outer length$$=30m$$ and Outer breadth$$=12m$$
    As per given, On the three sides of the lawn there are flower-beds having a uniform width of 2 m.
    $$\therefore$$ length of lawn$$=30-2-2=26m$$
    and
    breadth of lawn$$=12-2=10m$$
  • Question 10
    1 / -0
    The diagram, given below, shows two paths drawn inside a rectangular field 80 m long and 45 m wide. The widths of the two oaths are 8 m and 15 m as shown. Find the area of the shaded portion.

    Solution
    Given,  rectangular field is 80 m long and 45 m wide.
    Two paths are drawn inside the rectangular field. The widths of the two oaths are 8 m and 15 m.
    The two paths intersect. The length and breath of the intersection is $$8$$ m and $$15$$ m.

    Area of the shaded region $$=(8\times 80) + (15\times 45) - (15\times 8)$$
                                              $$=640+675-120$$ sq. m
                                              $$=1195$$ sq. m
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now