`
Self Studies

Perimeter and Area Test - 19

Result Self Studies

Perimeter and Area Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A floor which measures $$15m\, \times\, 8m$$ is to be laid with tiles measuring $$50cm\, \times\, 25cm$$. Find the number of tiles required.
    Further, if a carpet is laid on the floor so that a space of 1 m exists between its edges and the edges of the floor, what fraction of the floor is uncovered.
    Solution
    We know, $$50 cm = 0.5m $$ and 
    $$25 cm = 0.25m$$
    Tiles along the length of the room=$$\dfrac{15}{0.5}$$ = $$30$$ tiles
    Tiles along the length of the room=$$\dfrac{8}{0.25}$$ =$$32$$ tiles
    Total number of tiles required =$$30\times 32 $$ =$$960$$ tiles
    To leave $$1 m$$ between the carpet and wall on all sides, the carpet needs to be $$2 m$$ shorter in each dimension.
    Therefore,
      $$(15-2)m(8-2)m$$
    $$=(13\times 6)m$$
    $$=78 m^2$$
    Therefore, the room area is $$15\times 8$$ = $$120 m^2$$
    The carpet area is $$78 m^2$$
    The fraction of the area uncovered =$$\dfrac{120-78}{120}$$= $$\dfrac{42}{120}$$=$$\dfrac{7}{20}$$
                                 
                                 
                                                           
  • Question 2
    1 / -0
    The shaded portion of the figure, given along side,shows two concentric circles.
    If the circumference of the two circles are $$396 \:cm$$ and $$374\: cm$$, find the area of the shaded portion.

    Solution
    Given,
    $$2\pi r=374cm$$
    $$2\pi R=396cm$$
    Therefore,
    $$2\pi r=374cm$$
    $$=>r=\cfrac{374\times7}{2\times 22}$$
           $$=59.5$$
    $$2\pi R=396cm$$
    $$=>R=\cfrac{396\times7}{2\times 22}$$
           $$=63$$
    Area of shaded portion=$$(\pi R^2-\pi r^2)cm^2$$
                                        =$$\pi [(63)^2-(59.5)^2]cm^2$$
                                        =$$\pi (3969-3540.25)$$
                                        =$$1347.5cm^2$$ 
  • Question 3
    1 / -0
    The area of a circle is $$394.24$$ $$cm^2$$.  What is  the radius of the circle ?
    Solution
    Area of the circle $$=394.24 \ cm^2$$
    $$\implies \pi r^2=394.24$$
    $$\implies r^2=\dfrac{394.24\times 7}{22}$$
    $$\implies r^2=125.44$$
    $$\implies r=11.2\ cm$$ 
  • Question 4
    1 / -0
    The circumference of a circular field is $$308 m$$, Find its Area.
    Solution
    Let the radius of the circle be $$r$$ cm
    Circumference of the circle=$$308$$
    Therefore,
    $$2\pi r=308$$

    $$\Rightarrow r=\dfrac{308\times 7}{2\times 22}$$

    $$r=49m$$

    Therefore,
    Area of the circle$$=\pi \times (49)^2$$

                               $$=\dfrac{22}{7}\times 2401$$

                               $$=7546m^2$$
  • Question 5
    1 / -0
    The diameter of a circle is $$28 cm$$. Find its circumference
    Solution
    Diameter of  a circle $$=28$$ cm
    Thus, circumference $$=\pi \times 28$$ cm
                                        $$=\dfrac{22}{7} \times 28$$ cm
                                        $$=22 \times 4$$ cm
                                        $$=88$$ cm
  • Question 6
    1 / -0
    The area enclosed by the circumferences of two concentric circles is $$346.5\, cm^2$$. If the circumference of the inner circle is $$88$$ cm, then the radius of the outer circle is
    Solution
    $$ Given-\\ O\quad is\quad the\quad centre\quad of\quad two\quad concentric\quad circles\quad with\quad outer$$

    $$ radius\quad OA={ r }_{ 2 }\quad \& \quad inner\quad cicumference=C=88cm.$$

    $$ ar.ring\quad between\quad the\quad circles=346.5{ cm }^{ 2 }.$$

    $$ To\quad find\quad out-$$

    $$ { r }_{ 2 }=?$$

    $$ Solution-$$

    $$ inner\quad cicumference=88cm.$$

    $$ Let\quad the\quad radius\quad of\quad the\quad inner\quad circle\quad be\quad { r }_{ 1 }.$$

    $$ \therefore \quad { r }_{ 1 }=\dfrac { C }{ 2\pi  } =\dfrac { 346.5 }{ 2\times \frac { 22 }{ 7 }  } cm=14cm.$$

    $$ So\quad ar.ring=ar.outer\quad circle-ar.inner\quad circle=\pi \left\{ { { r }_{ 2 } }^{ 2 }-{ { r }_{ 1 } }^{ 2 } \right\} $$

    $$ \Longrightarrow 346.5=\dfrac { 22 }{ 7 } \times \left\{ { { r }_{ 2 } }^{ 2 }-{ { r }_{ 1 } }^{ 2 } \right\} $$

    $$ { { \Longrightarrow r }_{ 2 } }^{ 2 }=306.25$$

    $$ \Longrightarrow r_2=17.5cm.$$

    $$ \therefore \quad The\quad radius\quad of\quad the\quad outer\quad circle=17.5cm.$$

    $$ Ans-\quad Option\quad B. $$

  • Question 7
    1 / -0
    The radii of two circles are $$25\ cm$$ and $$18\ cm$$. Find the radius of the circle which has a circumference equal to the sum of the circumference of these two circles.
    Solution
    The circumference of a circle $$=2\pi r$$
    Let $$R$$ be the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles.
    $$2\pi R=2\pi \times 25+2\pi \times 18$$
    $$\implies R=25+18=43\ cm$$
  • Question 8
    1 / -0
    The diameter of a circle is $$28 cm$$. Find the one-fourth of its area.
    Solution
    The diameter of a circle is $$28cm$$
    Therefore,
    Radius of the circle=$$\dfrac{28}{2}=14cm$$
    Therefore,
    Area of the circle$$=\pi (14)^2$$

                              $$=\dfrac{22}{7} \times 196$$

                              $$=616cm^2$$

    So, $$\dfrac 14 \times 616 = 154 cm^2$$
  • Question 9
    1 / -0

    Directions For Questions

    The cross-section of a piece of metal $$4$$ m in length is shown below. Calculate :

    ...view full instructions

    The area of the cross-section;

    Solution
    The given diagram can be divided in two parts, rectangle ABCD and triangle CEF.
    $$AB=12$$cm
    $$BE=16$$cm
    $$FD=7.5$$cm
    $$AD=BC=10$$cm
    Now,
    $$AB=CD$$  (Opposite sides of a rectangle)
    $$=>AB=CF+FD$$
    $$=>12=CF+7.5$$
    $$=>CF=4.5$$cm
    Again,
    $$BE=BC+CE$$
    $$=>16=10+CE$$
    $$=>CE=6$$cm
    Area of cross section=Area of rectangle ABCD+$$\triangle$$CEF 
                                       $$=AB\times AD+\dfrac{1}{2}\times CE\times EF$$
                                       $$=10\times 12+\dfrac{1}{2}\times 6\times 4.5$$
                                       $$=133.5cm^2$$                 

  • Question 10
    1 / -0
    Find the area of a ring shaped region enclosed between two concentric circles of radii $$20$$ cm and $$15$$ cm.
    Solution
    Let us given $$R = 20$$ $$cm $$ & $$r = 15$$ $$cm $$
    The area of a ring shaped region$$=\pi(20)^2-\pi(15)^2$$
                                                        $$=(400-225)\times \dfrac{22}{7}$$
                                                        $$=(175)\times \dfrac{22}{7}$$
                                                       $$ =550$$ sq. cm

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now