Self Studies
Selfstudy
Selfstudy

Perimeter and Area Test - 20

Result Self Studies

Perimeter and Area Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The circumference of a circular field is $$528\ m$$. Then its radius is
    Solution
    Let $$r$$ be the radius of the circle
    Circumference of the circle $$=528$$
           $$\Rightarrow 2\pi r=528$$
           $$\Rightarrow r=\dfrac{528\times 7}{22\times 2}$$
           $$\Rightarrow r=84\ m$$
  • Question 2
    1 / -0
    The following figure shows a square cardboard $$ABCD$$ of side $$28\ cm.$$ Four identical circles of the largest possible size are cut from this card as shown below.
    Find the area of the remaining cardboard.

    Solution
    Let the radius of each circle be $$r.$$

    Then,
    $$4r=28\ cm$$
      $$r=7\ cm$$

    Therefore,
    Area of $$4$$ circle $$=4\times \pi (7)^2$$
                               $$=4\times \dfrac{22}{7}\times 7\times 7$$
                               $$=616\ cm^2$$

    Area of square $$=28^2$$
                              $$=784\ cm^2$$

    Area of remaining cardboard $$=$$ Area of square $$-$$ Area of $$4$$ circles
                                                      $$=784-616$$
                                                      $$=168\ cm^2$$
  • Question 3
    1 / -0
    The area of a circle is $$\displaystyle 2464\:m^{2}$$, then the diameter is 
    Solution
    Since, Area of circle $$= 2464m^2$$
    $$\therefore \displaystyle \frac{\pi d^{2}}{4}=2464$$

    $$\Rightarrow \displaystyle d^{2}=\dfrac{2464\times 4}{\dfrac{22}{7}}=3136$$

    $$ \Rightarrow \displaystyle d=\sqrt{3136}=56m$$
  • Question 4
    1 / -0
    If the difference between the circumference and diameter of a circle is $$30 cm$$ then what is the radius of the circle?
    Solution
    Let r be the radius of the circle
    Then $$\displaystyle 2\pi r-2r=30\Rightarrow 2r\left ( \pi -1 \right )=30$$
    $$\displaystyle \Rightarrow r\left ( \frac{22}{7}-1 \right )=15\Rightarrow r\times \frac{15}{7}=15\Rightarrow r=\frac{15\times 7}{15}=7\:cm$$
  • Question 5
    1 / -0
    The area of a circular plot is $$3850$$ square meters. What is the circumference of the plot ?
    Solution
    If $$r$$ is the radius of the plot then area is given as $$\pi r^2$$
    as per the question,
    $$\displaystyle\pi r^{2}=3850$$
    $$\Rightarrow r^{2}=\dfrac{3850\times 7}{22}=1225$$
    $$\displaystyle \Rightarrow r= 35\text{ m}$$
    since circumference $$=2\pi r$$
    $$=2\times \dfrac{22}{7}\times 35\text{ m}$$
    $$=220\text{ m}$$
  • Question 6
    1 / -0
    In the given figure, the area enclosed between two concentric circles is $$808.5\ cm^2$$. The circumference of the outer circle is $$242\ cm$$. Calculate the radius of the inner circle

    Solution
    Let the radius of the inner circle be $$r$$ and the radius of the outer circle be $$R$$

    Area enclosed between the two concentric circles $$=\pi(R^2-r^2)$$

    Given $$2\pi R=242$$

    $$\Rightarrow R=\cfrac{242 \times 7}{22\times 2}$$

    $$\Rightarrow R=\cfrac{77}{2}$$

    Now, $$\pi(R^2-r^2)=808.5$$

    $$\Rightarrow {\left(\cfrac{77}{2}\right)}^2-r^2=\cfrac{808.5 \times 7}{22}$$

    $$\Rightarrow \cfrac{5929}{4}-r^2=257.25$$

    $$\Rightarrow r^2=1225$$

    $$\Rightarrow r=35$$

    Thus, Radius of the inner circle $$=35\ cm$$
  • Question 7
    1 / -0
    The area enclosed between two concentric circles is $$770$$ $$cm^2$$. If the radius of the outer circle is $$21$$ $$cm$$, calculate the radius of the inner circle.
    Solution
    Let radius of the inner circle be $$r$$ and radius of the outer circle be $$R=21cm$$

    Area enclosed between the two concentric circles $$=\pi(R^2-r^2)=770cm^2$$

    $$\Rightarrow 770=\pi(R^2-r^2)$$

    $$\Rightarrow 770=\dfrac{22}{7}(21^2-r^2)$$

    $$\Rightarrow \dfrac{770\times 7}{22}=441-r^2$$

    $$\Rightarrow 245=441-r^2$$

    $$\Rightarrow r^2=196$$

    $$\Rightarrow r=\sqrt{196}$$

    $$\Rightarrow r=14$$

    Thus, radius of the inner circle $$=14$$ $$cm$$

  • Question 8
    1 / -0
    The inner circumference of a circular track $$14\ m$$ wide is $$440\ m$$. The radius of the outer circle is
    Solution
    Let $$R $$ and $$r $$ be tha radii of the outer and inner circle.
    So by given $$R-r = 14m$$
    Inner circumference $$= \displaystyle 2\pi r=2\times \frac{22}{7}\times r=\frac{44r}{7}$$
    Given $$\displaystyle \frac{44r}{7}=440\Rightarrow r=\frac{440\times 7}{44}=70\ m$$
    $$\displaystyle \therefore $$ Radius of outer circle $$= 70\ m + 14\ m = 84\ m$$ 

  • Question 9
    1 / -0
    Find the the perimeter of the figure given correct to one decimal place.

    Solution
    The perimeter of the given figure $$= AB + CD + EF + GH + 4 \times$$ ( Perimeter of a quadrant of the circle )   $$....(1)$$

    Now, $$AB = EF = 20 m - (2 m + 2 m) = 16 m$$

    Similarly, $$CD = GH = 10 m - (2 m + 2 m) = 6 m$$

    Now, the perimeter of the quadrant having radius $$2 \,\,m\,\,$$

    $$ = \dfrac { 2\pi r }{ 4 }$$

    $$= \dfrac { \pi r }{ 2 }$$

    $$ =\dfrac { \pi \times 2 }{ 2 }$$

    $$ =\pi \,\, $$ 

    So, the perimeter of the $$4$$ quadrants having radius $$ 2\,\, m \,\,= \,\,4\pi\,\, $$

    Put all the respective values in $$(1)$$, we get

    Perimeter of the given figure $$= 16 m + 6 m + 16 m + 6 m + 4$$ $$\pi \,\,\, $$

    $$= 44 m + (4 \times 3.14 )$$

    $$ = 44 + 12.56 $$

    $$= 56.56 m \sim 56.6 m$$

    Hence, the perimeter of the given figure correct to one decimal place is 56.6 m.  

  • Question 10
    1 / -0
    What is the perimeter of the given figure correct to one decimal place?

    Solution
    Perimeter(P)=AB + EF + CD + GH + 4 x Arc AH
    $$\displaystyle =2\times AB+2\times EF+$$ Circumference of circle with radius 2
    $$\displaystyle =2\times (20-4)m+2\times (10-4)m+2\times \frac{22}{7}\times 2$$
    = 32 m + 12 m + 12.57 m =56.6m
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now