`
Self Studies

Perimeter and Area Test - 24

Result Self Studies

Perimeter and Area Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ABCD$$ is a square field of side $$80\;m$$. If $$EF$$ is perpendicular to $$DC$$, find the area of $$\Delta EDC$$ and the area of the shaded portion respectively.

    Solution
    ar $$\Delta EDC=\dfrac { 1 }{ 2 } DC\times EF$$

                        $$=$$ $$\dfrac { 1 }{ 2 } \times 80\times 80$$ 

                        $$=$$ $$3200$$ $${ m }^{ 2 }$$

    area of shaded portion $$=$$ Area of square - $$3200$$ $${ m }^{ 2 }$$

                                            $$=$$ $${ \left( 80\times 80 \right)  }-3200$$

                                            $$=$$ $$3200$$ $${ m }^{ 2 }$$

  • Question 2
    1 / -0
    Mrs. Kaushik has a square plot with the measurement as shown in the figure. she wants to construct a house in the middle of the plot. A garden is developed around the house. Find the total cost of developing a garden around the house at the rate of $$Rs.\;55\;per\;m^2$$.

    Solution
    Area of the garden = Area of the outer square - Area of the inner rectangle
    $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=25\times25\;m^2-20\times15\;m^2$$
    $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=(625-300)\;m^2=325\;m^2$$
    Cost of developing a garden @ $$Rs.\;55\;per\;m^2=Rs.\;(55\times325)=Rs.\;17,875$$.
  • Question 3
    1 / -0
    In figure, $$AB$$ and $$CD$$ are two perpendicular diameters of a circle with centre $$O$$. If $$OA$$$$=$$$$7cm$$, find the area of the shaded region. [Use $$\pi=\displaystyle\frac{22}{7}$$]

    Solution
    Area of shaded region $$=$$ area of larger circle $$-$$ area of smaller circle $$-$$ area of the triangle
                                           
                                           $$=\pi { R }^{ 2 }-\pi { r }^{ 2 }-\dfrac { 1 }{ 2 } \times DC\times BO$$

                                            $$=\pi { R }^{ 2 }-\pi { r }^{ 2 }-\dfrac { 1 }{ 2 } \times DC\times BO$$

                                            $$=\dfrac { 22 }{ 7 } \left( { 7 }^{ 2 }-{ \left( 3.5 \right)  }^{ 2 } \right) -\dfrac { 1 }{ 2 } \times 14\times 7$$

                                            $$=\dfrac { 22 }{ 7 } \left( 49-12.25 \right) -49$$

                                           $$=(\dfrac { 22 }{ 7 } \times 36.75)-49$$

                                           $$= 115.5 - 49$$

                                           $$= 66.5$$ $${ cm }^{ 2 }$$
  • Question 4
    1 / -0
    If the diameter of a semicircular protractor is $$14cm$$ then find its perimeter.
    Solution
    Diameter $$=14cm$$
    Radius=$$\displaystyle\frac{Diameter}{2}=\frac{14cm}{2}=7cm$$
    Length of the semicircular part $$=\pi r=\displaystyle\frac{22}{7}\times (7)=22cm$$
    Total perimeter=length of semicircular part +Diameter
    $$=22cm+14cm=36cm$$
    Thus, the perimeter of the protractor is $$36cm$$

  • Question 5
    1 / -0
    The area of the shaded portion in the given figure is

    Solution
    $$\textbf{Step 1 : Find the required area}$$
                     $$\text{Area of the outer semi-circle =} \dfrac{\pi}{2}\times 5^2$$

                     $$\text{Area of the inner semi-circle =} \dfrac{\pi}{2}\times (5-1)^2$$
                   
                     $$\therefore \text{ Area of shaded region = Area of outer semicircle -  Area of inner semicircle}$$
                                                                   $$=\dfrac{\pi}{2}\times 5^2-\dfrac{\pi}{2}\times 4^2$$
                    
                                                                   $$=  \dfrac{\pi}{2}(25-16)$$
                                                                   $$= \text{4.5  $\pi$  unit}^2$$

    $$\boldsymbol{\textbf{Hence,  Area of shaded portion is 4.5 $\pi$} \textbf{ sq. unit}}$$
  • Question 6
    1 / -0
    A circular ground whose diameter is $$140$$ meters is to be fenced by wire three times around its circumference. Find the length of wire needed.

    $$[$$use $$\displaystyle \pi = \frac {22}{7}$$$$]$$
    Solution
    Diameter of circular ground $$=140m$$.
    Radius of circular ground $$=70m$$.
    Circumference of circular ground $$=2\pi r$$

    $$\displaystyle =2\times \frac {22}{7}\times 70$$
    $$=440m$$
    Length of wire needed to fenced three times
    $$=440\times 3$$
    $$=1320m$$
  • Question 7
    1 / -0
    The inner circumference of a circular tracks is $$220\ m$$. The track is $$7$$ $$m$$ wide everywhere. Calculate the cost of putting up a fence along the outer circle at the rate of Rs. $$2$$ per metre. Use $$\pi=\displaystyle\frac{22}{7}$$
    Solution
    Circumference of inner side = $$220 m$$

    $$\Rightarrow 2\pi r=220\Rightarrow r=\dfrac { 220\times 7 }{ 44 } =35m$$

    Now, width of track  $$=7m$$

    $$\therefore $$ Outer radius $$=35+7 = 42 m$$

    Therefore outer circumference  $$=2\pi R=2\times \dfrac { 22 }{ 7 } \times 42=264m$$

    $$\therefore $$ Cost of fencing $$=$$ Rs. $$\left( 264\times 2 \right) $$ $$=$$ Rs. $$528$$

  • Question 8
    1 / -0
    The radii of two circles are $$8$$cm and $$6$$cm respectively. Find the radius of the circle having its area equal to the sum of the areas of the two circles.
    Solution
    Let the radius of required circle is $$r$$ cm. 
    So, $$\pi r^2=\pi r^2_1+\pi r^2_2$$
    $$r^2=r^2_1+r^2_2$$
    $$r^2=(8)^2+(6)^2$$
    $$r^2=100$$
    $$r=10cm$$
  • Question 9
    1 / -0
    If the radius of circle is $$\displaystyle \pi $$, then its area will be:
    Solution
    Area of circle $$=$$ $$\pi { r }^{ 2 }=\pi \times { \left( \pi  \right)  }^{ 2 }={ \pi  }^{ 3 }$$
  • Question 10
    1 / -0
    Find the area of a circle whose circumference is $$22cm$$.
    Solution
    Let $$r$$ be the radius of the circle.

    Then, Circumference$$=22cm$$

    $$\displaystyle \Rightarrow 2\pi r=22$$

    $$\displaystyle\Rightarrow 2\times \frac{22}{7}\times r=22$$

    $$\Rightarrow r=\displaystyle\frac{7}{2}cm$$

    $$\therefore$$ Area of the circle$$=\displaystyle \pi r^2$$

    $$=\displaystyle\frac{22}{7}\times\frac{7}{2}\times \frac{7}{2}cm^2$$

    $$=38.5 \, cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now