Self Studies

Perimeter and Area Test - 33

Result Self Studies

Perimeter and Area Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two concentric circles form a ring. The inner and outer circumferences of the ring are $$50\dfrac{2}{7}\ m$$ and $$75\dfrac{3}{7}\ m$$ respectively. Find the width of the ring.
  • Question 2
    1 / -0
    If the base and altitude of a parallelogram are doubled, what happens to the area compared to the original one?
    Solution
    Area of parallelogram $$S_1=bh$$, where $$b$$ is the base and $$h$$ is the height.

    New Area, $$S_2=2b\times 2h$$
                             $$=4bh$$
                             $$=4S_1$$
    Hence, the area becomes $$4$$ times the original area.
  • Question 3
    1 / -0
    Find the area of a ring shaped region enclosed between two concentric circles of radii $$20$$ cm and $$15$$ cm.
    Solution
    We know that area of a circle is $$πr^2$$, where $$r$$ be a radius of the circle.
    Let us assume $$R = 20$$ $$cm$$ & $$r = 15$$ $$cm$$
    $$\therefore$$ Required area $$= \pi (R^2 - r^2 ) = \pi (20^{2} - 15^{2}) = 175π cm^{2}$$.



  • Question 4
    1 / -0
    Find the area of a parallelogram having base $$4$$ cm and height $$2$$ cm.
    Solution
    Base of the parallelogram, $$b=4$$ cm
    Height, $$h=2$$ cm

    Area of the parallelogram $$=b\times h$$

    $$=4\times 2$$

    $$=8$$ $$cm^{2}$$

  • Question 5
    1 / -0
    The circumference of a circle is $$31.4\ cm$$. Find the area of the circle? (Take $$\pi=3.14$$)
    Solution
    Given,
    circumference of the circle$$ = 31.4cm$$

    Let, the radius be $$r$$

    $$\Rightarrow 2\pi r = 31.4$$

    $$\Rightarrow r = \dfrac{31.4}{2\times \pi}$$

    $$\Rightarrow r = \dfrac{31.4}{2\times 3.14}$$

    $$\Rightarrow r = 5$$

    So, the radius $$r=5\ cm$$

    Now, Area of circle $$= \pi r^2$$

                                     $$= 3.14\times (5)^2\ cm^2$$

                                     $$= 3.14\times 25\ cm^2$$

                                     $$=78.5\ cm^2$$

    Hence, the area of the circle is $$78.5\ cm^2$$.
  • Question 6
    1 / -0
    Find the area  of the circular park of Janakpuri whose circumference is 77m77m
    Solution

    Given that,

    Circumference of a circle $$=77\,m$$

    We know that,

    Circumference of a circle $$=2\pi r=77$$

      $$ \Rightarrow 2\times \dfrac{22}{7}\times r=77 $$

     $$ \Rightarrow r=\dfrac{77\times 7}{2\times 22} $$

     $$ \Rightarrow r=\dfrac{49}{4} $$

    Then, Area of circular park

      $$ =\pi {{r}^{2}}=\dfrac{22}{7}\times \dfrac{49}{4}\times \dfrac{49}{4} $$

     $$ \Rightarrow \dfrac{11\times 7\times 49}{2\times 4} $$

     $$ \Rightarrow \dfrac{77\times 49}{8} $$

     $$ \Rightarrow \dfrac{3773}{8}\,\,{{m}^{2}} $$

     $$ or $$

     $$ \Rightarrow 471.62\,{{m}^{2}} $$

  • Question 7
    1 / -0
    Find the area of a circle whose radius is $$6$$ $$cm$$.
    Solution
    The radius of circle is $$6$$ $$cm$$

    The area of circle is given as $$πr^2$$

    $$\implies π(6)^2$$ $$cm^2$$

    $$\implies 36π$$ $$cm^2$$
  • Question 8
    1 / -0
    If the perimeter of a circle is $$132$$ cm, find its area.
    Solution
    Let the radius of the circle is $$r$$ cm
    Perimeter of a circle $$=2\pi r=132$$

    $$ \Rightarrow 2\times \cfrac{22}{7}\times r=132$$

    $$\Rightarrow r=\cfrac{132\times 7}{22\times 2}$$

    $$\Rightarrow r=21$$ cm

    Area of the circle $$=\pi r^{2}$$
    $$ \Rightarrow =\cfrac{22}{7}\times 21\times 21$$
    $$ \Rightarrow =1386$$ $$cm^{2}$$
  • Question 9
    1 / -0
    One diagonal of a parallelogram is $$7cm$$ and the perpendicular distance of this diagonal from either of the outlying vertices is $$27cm$$. The area of the parallelogram (in sq.cm) is:
    Solution
    Area of parallelogram $$=2 \times $$area of $$\triangle ACD$$
    $$=2\times \dfrac{1}{2}\times 27 \times 7$$
    $$189\ cm^2$$


  • Question 10
    1 / -0
    The radius of a circular wheel is $$1.75\ m$$. The number of revolutions that it will make in covering $$11\ kms$$ is:
    Solution
    Let It take 'n' revolution

    Then $$ n\times 2\pi r = 11,000$$

    $$\displaystyle \Rightarrow n\times2\times \frac{22}{7}\times 1.75 = 11000$$

    $$\displaystyle \therefore n = 1000$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now