Self Studies

Perimeter and Area Test - 36

Result Self Studies

Perimeter and Area Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A wire is bent to form a square of side $$22\, cm$$ If the wire is rebent to form a circle, its radius is.
    Solution
    Option (b) is correct. 
    Given, side of a square is $$22\, cm$$ The wire has same length. 
    Hence, perimeter of square arid circumference of circle are equal. 
    ACQ, 
    Circumference of circle $$=$$ Perimeter of square 
    $$= 2 \times \pi \times r = 4\times (side)$$
    $$ \Rightarrow 2\times \dfrac {22}{7}\times r = 4\times 22$$

    $$\Rightarrow  r =\dfrac {4\times 22 \times 7}{2\times 22}$$
    $$ \Rightarrow r= 14\, cm$$
    Therefore, $$14\, cm$$ is the radius of the circle. 
  • Question 2
    1 / -0
    In Fig., EFGH is a parallelogram, altitudes FK and Fl are 8 cm and ,10 cm respectively. If $$EF =10\, cm$$, then area of EFGH is 

    Solution
    Option (c) is correct
    Area of parallelogram (EFGH) $$=$$ Base $$\times$$ corresponding height 
    $$ = 10\times 4$$
    $$ = 40\, cm^2$$
  • Question 3
    1 / -0
    Area of triangle PQR is $$100\, cm^2$$ (Fig ). If altitude QT is $$10\, cm$$, then its base PR is.

    Solution
    Option (a) is correct.
    Give, area of triangle $$PQR =100\, cm^2$$.
    We know drat Area of triangle $$PQR \times \dfrac {1}{2}  PR \times QT$$

    $$ \Rightarrow  100 = \dfrac {1}{2} \times PR \times 10$$

    $$ \Rightarrow  PR =\dfrac {100\times 2}{10}$$

    $$ \Rightarrow  PR = 20\, cm$$
  • Question 4
    1 / -0
    In Fig, if $$PR = 12\, cm, QR = 6\, cm$$ and $$PL= 8\, cm$$, then QM is 

    Solution

    Given that $$PL =8\, cm$$
    $$PR =12\,cm$$
    $$ QR = 6\, cm$$
    Now, in right-angled triangle PLR
    Using Pythagoras theorem,
    $$ \Rightarrow  PR^2 = PL^2 + LR^2$$
    $$ \Rightarrow  LR^2 = 144 - 64$$
    $$ =\sqrt {80} = 4\sqrt {5}\  cm$$
    $$LR = LQ +QR$$
    $$ \Rightarrow  LQ = LR - QR = (4\sqrt{5} - 6)\ cm$$

    Now area of triangle PLR
    $$A =\dfrac {1}{2}\times \left ( 4\sqrt {5} \right )\times 8$$
    $$= 16\sqrt{5}\ cm^2$$

    Now, area of triangle PLQ
    $$A =\dfrac {1}{2}\times \left ( 4\sqrt {5} - 6\right )\times 8$$
    $$= (16\sqrt{5}-24) \,cm^2$$

    Hence, area of triangle PLR $$=$$ Area of triangle PLQ $$ +$$ Area of triangle PQR

    So, area of triangle PLR $$-$$ Area of triangle PLQ $$ =$$ Area of triangle PQR
    $$ \Rightarrow  16 \sqrt {5} - (16 \sqrt {5} -24)$$,
    $$ \Rightarrow $$  Area of triangle PQR $$= 24 \, cm^2$$

    $$ \Rightarrow  \dfrac {1}{2}\times  PR\times QM = 24$$

    $$ \Rightarrow  \dfrac {1}{2} \times 12 \times QM =24$$

    $$ \therefore QM = 4\,cm$$
  • Question 5
    1 / -0
    Area of circular garden with diameter $$8\, m$$ is.
    Solution
    Given, diameter is $$8\;\text{m}$$ 
    Hence, radius $$ =\dfrac{8}{2}\;\text{m}= 4\;\text{m}$$ 
    Therefore, area of the circular garden 
    $$=\pi r^2$$
    $$=\dfrac {22}{7}\times 4\times 4$$
     $$= 50.28\;\text{m}^2$$
  • Question 6
    1 / -0
    The area of a parallelogram is 60 $$cm^2$$ and one of its altitude is 5 cm. The length of its corresponding side is
    Solution
    Area of a parallelogram = 
    $$ side \times altitude$$
    $$ \Rightarrow a \times h $$ = 60
    $$ \Rightarrow a \times 5 $$ = 60
    $$ \Rightarrow a= \dfrac{60}{5} $$
    $$ \Rightarrow  a=12 cm $$
  • Question 7
    1 / -0
    The radius of a circle is $$5\ cm$$ then its area is
    Solution
    Area of circle $$=$$ $${\pi r}^2$$
                           $$=3.14\times5\times5$$
                           $$=78.5\ cm^2$$

    Hence, option $$E$$ is correct.
  • Question 8
    1 / -0
    Find the area of a ring-shaped region enclosed between two concentric circles of diameter $$8cm$$ and $$6cm$$
    Solution
    We know that area of a circle is $$πr^2$$, where $$r$$ be a radius of the circle.
    Let us assume $$R = 8$$ $$cm$$ & $$r = 6$$ $$cm$$
    $$\therefore$$ Required area $$= \pi (R^2 - r^2 ) = \pi (8^{2} - 6^{2}) =  28π \ cm^{2}$$.

  • Question 9
    1 / -0
    The area of circle whose circumference is $$44cm$$ is
    Solution
    Let $$C$$ is circumference of circle
    Given $$C=44\quad cm$$

    $$\therefore 2\pi r=44$$

    $$\therefore 2\times \frac { 22 }{ 7 } \times r=44$$

    $$\therefore r=\frac { 44\times 7 }{ 44 } $$

    $$\therefore r=7\quad cm$$
    Thus, radius of circle is 7 cm.

    Now, Area of circle is given by,
    $$A=\pi { r }^{ 2 }$$

    $$\therefore A=\frac { 22 }{ 7 } \times { 7 }^{ 2 }$$

    $$\therefore A=22\times 7$$

    $$\therefore A=154\quad { cm }^{ 2 }$$

    Thus, area of circle is $$154\quad { cm }^{ 2 }$$
  • Question 10
    1 / -0
    The external and internal radius of a circle path area $$5 m$$ and $$3m$$ respectively. The are of the circular path is
    Solution
    We know that area of a circle is $$πr^2$$, where $$r$$ be a radius of the circle.
    Let us assume $$R = 5$$ $$m$$ & $$r = 3$$ $$m$$
    $$\therefore$$ Required area $$= \pi (R^2 - r^2 ) = \pi (5^{2} - 3^{2}) =  16π \ m^{2}$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now