Self Studies

Congruence of Triangles Test - 18

Result Self Studies

Congruence of Triangles Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the figure, $$\displaystyle AD\parallel BC$$ and $$\displaystyle AD=BC$$. Then $$\displaystyle \Delta ABD\cong \Delta CDB$$ by congruence postulate.

    Solution
    In $$\displaystyle \Delta ABD$$ and $$\displaystyle \Delta CDB$$
    $$\displaystyle AD=BC$$
    $$\displaystyle \angle BDA=\angle DBC$$ (Alternate angles)
    $$\displaystyle BD=BD$$
    $$\displaystyle \therefore \quad \Delta ABD\cong \Delta CDB$$ (By SAS postulate)
  • Question 2
    1 / -0
    If $$\overline{AC}$$ and $$\overline{BD}$$ intersect at $$O$$ such that $$AO = CO$$ and $$BO = DO$$, then:

    Solution
    In $$\triangle AOB$$  and $$\triangle DOC$$,
    side $$OA =$$ side $$OC$$          ... given
    side $$OB =$$ side $$OD$$          ... given
    $$\angle AOB \cong \angle COD$$        ...Vertically opposite angles
    $$\therefore \triangle AOB \cong \triangle COD$$   ...SAS test of congruence.
    $$\therefore$$ side $$AB$$ $$\cong$$ side $$CD$$         ...c.s.c.t 
    $$\therefore \angle BAO \cong \angle DCO$$         ....c.a.c.t
    i.e. $$\angle BAC \cong \angle DCA$$      ....$$A-O-C$$ and $$B-O-D$$
    $$\therefore AB \parallel CD$$       ....by converse of alternate angles test
    So, option B is correct.
  • Question 3
    1 / -0
    In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DBC,AC=BD$$ and $$\displaystyle \angle ABC=\angle BCD={ 90 }^{ o }$$. Then $$\displaystyle \Delta ABC\cong \Delta DCB$$ by the postulate

    Solution
    In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DBC$$,
    $$\displaystyle \angle ABC=\angle BCD$$
    $$\displaystyle AC=BD$$ (Givenn)
    $$\displaystyle BC=BC$$ (Common Side)
    $$\displaystyle \Delta ABC\cong \Delta DCB$$ WCB (By RHS postulate) 
  • Question 4
    1 / -0
    In the given figure, $$AD=BC, AC=BD.$$ Then $$\triangle PAB$$ is

    Solution
    In $$\triangle ADB$$  and $$\triangle ACB$$
    $$AD=BC$$          (Given)
    $$AC=BD$$
    $$AB=BA$$          (Common)
    $$\therefore $$ $$\triangle ADB\cong \triangle ACB$$          (SSS)
    $$\Rightarrow $$ $$\angle ABD=\angle CAB$$          (cpct)
    $$\Rightarrow $$ $$\angle ABP=\angle PAB$$
    $$\Rightarrow $$ $$PA=PB$$          (Sides opp. equal angles are equal)
    $$\Rightarrow $$ $$\triangle PAB$$ is isosceles.
  • Question 5
    1 / -0
    In the figure, $$\displaystyle PS=QR$$ and $$PQ=SR$$, then choose the correct option.

    Solution
    In $$\displaystyle \Delta PQR$$ and $$\displaystyle \Delta PSR$$
    $$\displaystyle PS=QR,PQ=SR,PR=PR$$
    $$\displaystyle \therefore \quad \Delta RQP\cong \Delta RSP$$ (By SSS postulate)
  • Question 6
    1 / -0
    In  $$ \displaystyle \bigtriangleup ABC,AD\perp BC,\angle B=\angle C $$ and AB = AC State by which property $$ \displaystyle \Delta ADB\cong \Delta ADC$$ ?
    Solution

  • Question 7
    1 / -0
    The two quadrilaterals are congruent.
    Which angle in quadrilateral WXYZ corresponds to $$\displaystyle \angle BCD$$ in quadrilateral ABCD?

    Solution
    Clearly, $$\angle WXY$$ corresponds to $$\angle BCD$$ because $$BC$$ faces the angles marked with one arc and three arc and $$XY$$ also faces the angles marked with one arc and three arcs.
    So, $$\text{D}$$ is the correct option.
  • Question 8
    1 / -0
    In the figure given below, $$\displaystyle \Delta ABC\cong \Delta MBC.$$ The corresponding side to $$BA$$ is ......

    Solution

    Given $$\triangle ABC \cong \triangle MBC$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=MB$$,  $$BC=BC$$, $$AC=MC$$, $$\angle A=\angle M$$, $$\angle B=\angle B$$ and $$\angle C=\angle C$$.

    Thus, $$AB=MB$$ $$\implies$$ $$BA=BM$$.

    Hence, option $$A$$ is correct.

  • Question 9
    1 / -0
    In the figure given below, $$\displaystyle \Delta ABC\cong \Delta XYZ$$. The corresponding side to $$XZ$$ is .......

    Solution

    Given $$\triangle ABC \cong \triangle XYZ$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=XY$$,  $$BC=YZ$$, $$AC=XZ$$, $$\angle A=\angle X$$, $$\angle B=\angle Y$$ and $$\angle C=\angle Z$$.

    Thus, $$AC=XZ$$.

    Hence, option $$C$$ is correct.

  • Question 10
    1 / -0
    In the triangles $$ABC$$ and $$PQR,$$ $$AC=QP, BC=RP$$ and $$AB=QR.$$ The measure of $$\angle A$$ is ___.

    Solution
    Given: In $$\triangle ABC$$ and $$\triangle PQR,$$

    $$\angle C=120^\circ$$ and $$\angle R=40^\circ$$ 

    Now, $$AC=QP$$               ...(1)

    and $$ BC=RP$$                ...(2)

    and $$AB=QR$$                 ...(3)

    Hence $$ABC \cong PQR$$ $$($$by $$SSS$$ congruency rule$$)$$


    By CPCT, $$ \angle B=\angle R=40^\circ$$

    and $$ \angle C=\angle P={ 120 }^{ \circ }$$

    and $$ \angle A=\angle Q$$

    Now, $$\displaystyle \angle A+\angle B+\angle C={ 180 }^{ o }$$

    $$\displaystyle \Rightarrow   \angle A+{ 40 }^{ \circ }+{ 120 }^{ \circ }={ 180 }^{ \circ }$$

    $$\displaystyle \Rightarrow  \angle A={ 20 }^{ \circ}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now