Self Studies

Factorisation Test - 22

Result Self Studies

Factorisation Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Factorise: $$\displaystyle 80{ p }^{ 2 }-72p$$
    Solution
    $$\displaystyle 80{ p }^{ 2 }-72p=\left( 8\times 10\times p\times p \right) -\left( 8\times 9\times p \right) $$
                        
                         $$= 8p(10p-9)$$
  • Question 2
    1 / -0
    Factorisation of the expression $$\displaystyle 17{ p }^{ 2 }q-102p{ q }^{ 2 }$$ results in:
    Solution
    $$\displaystyle 17{ p }^{ 2 }q-102p{ q }^{ 2 }$$

    $$\displaystyle =\left( 17\times p\times p\times q \right) -\left( 17\times 6\times p\times q\times q \right) $$

    $$\displaystyle =17pq(p-6q)$$
  • Question 3
    1 / -0
    The factorisation of $$ \left (21a^2+3a \right )$$ is
    Solution
    The factorisation of $$21a^2+3a$$ is $$3a(7a+1)$$
    Taking common terms out, we get $$3a(7a+1)$$.
  • Question 4
    1 / -0
    Multiplying factors is an example of
    Solution
    Multiplying factors is an example of factorisation.
    Example: $$4x^2+2x$$ is a factor $$2x(2x+1)$$
    By multiplying the factor we get $$2x(2x+1) = 4x^2+2x$$
  • Question 5
    1 / -0
    $$\left( 14{ x }^{ 2 }yz-28{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 }+32{ y }^{ 2 }{ z }^{ 2 } \right) \div \left( -4xy \right) $$ is equal to
    Solution
    $$(14x^{2}yz-28x^{2}y^{2}z^{3}+32y^{2}z^{2})\div (-4xy)$$

    $$=\dfrac{14x^{2}yz}{-4xy}-\dfrac{28x^{2}y^{2}z^{3}}{-4xy}+\dfrac{32y^{2}z^{2}}{-4xy}$$

    $$=-\dfrac{7}{2}xz+7xyz^{3}-\dfrac{8yz^{2}}{x}$$
    Hence, B is correct.
  • Question 6
    1 / -0
    $$4a + 12b$$ is equal to
    Solution
    Given: $$4a+12b$$
             $$=4\cdot a+4\cdot 3\cdot b$$
             $$=4\cdot a+4\cdot 3b$$
             $$=4(a+3b)$$, (common factor $$4$$ is taken out)
  • Question 7
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$(4l^5 - 6l^4 + 8l^3) \div 2l^2$$
    Solution
    We divide the given polynomial $$4l^5-6l^4+8l^3$$ by the monomial $$2l^2$$ as shown below:

    $$\dfrac { 4l^{ 5 }-6l^{ 4 }+8l^{ 3 } }{ 2l^{ 2 } } \\ =\dfrac { 4l^{ 5 } }{ 2l^{ 2 } } -\dfrac { 6l^{ 4 } }{ 2l^{ 2 } } +\dfrac { 8l^{ 3 } }{ 2l^{ 2 } } \\ =\left( \dfrac { 2\times 2\times l^{ 5 } }{ 2l^{ 2 } }  \right) -\left( \dfrac { 2\times 3\times l^{ 4 } }{ 2l^{ 2 } }  \right) +\left( \dfrac { 2\times 2\times 2\times l^{ 3 } }{ 2l^{ 2 } }  \right) \\ =\left( \dfrac { 2\times l^{ 5 }\times l^{ -2 } }{ 1 }  \right) -\left( \dfrac { 3\times l^{ 4 }\times l^{ -2 } }{ 1 }  \right) +\left( \dfrac { 2\times 2\times l^{ 3 }\times l^{ -2 } }{ 1 }  \right)$$
    $$=(2\times l^{ (5-2) })-(3\times l^{ (4-2) })+(4\times l^{ (3-2) })\quad \quad \quad \quad \quad \quad \left( \because \quad a^{ x }+a^{ y }=a^{ x+y } \right) \\ =2l^{ 3 }-3l^{ 2 }+4l\\ =l(2l^{ 2 }-3l+4)$$  

    Hence, $$\dfrac { 4l^{ 5 }-6l^{ 4 }+8l^{ 3 } }{ 2l^{ 2 } } =l(2l^{ 2 }-3l+4)$$.
  • Question 8
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$15(a^3 b^2 c^2 - a^2 b^3 c^2 + a^2b^2c^3) \div 3abc$$
    Solution
    We divide the given polynomial $$15(a^3b^2c^2-a^2b^3c^2+a^2b^2c^3)$$ by the monomial $$3abc$$ as shown below:

    $$\dfrac { 15(a^{ 3 }b^{ 2 }c^{ 2 }-a^{ 2 }b^{ 3 }c^{ 2 }+a^{ 2 }b^{ 2 }c^{ 3 }) }{ 3abc } \\ =\dfrac { 15a^{ 3 }b^{ 2 }c^{ 2 }-15a^{ 2 }b^{ 3 }c^{ 2 }+15a^{ 2 }b^{ 2 }c^{ 3 } }{ 3abc } \\ =\dfrac { 15a^{ 3 }b^{ 2 }c^{ 2 } }{ 3abc } -\dfrac { 15a^{ 2 }b^{ 3 }c^{ 2 } }{ 3abc } +\dfrac { 15a^{ 2 }b^{ 2 }c^{ 3 } }{ 3abc } \\ =\left( \dfrac { 3\times 5\times a\times a\times a\times b\times b\times c\times c }{ 3abc }  \right) -\left( \dfrac { 3\times 5\times a\times a\times b\times b\times b\times c\times c }{ 3abc }  \right) +\left( \dfrac { 3\times 5\times a\times a\times b\times b\times c\times c\times c }{ 3abc }  \right)$$
    $$=5a^{ 2 }bc-5ab^{ 2 }c+5abc^{ 2 }\\ =5abc(a-b+c)$$

    Hence, $$\dfrac { 15(a^{ 3 }b^{ 2 }c^{ 2 }-a^{ 2 }b^{ 3 }c^{ 2 }+a^{ 2 }b^{ 2 }c^{ 3 }) }{ 3abc } =5abc(a-b+c)$$.
  • Question 9
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$(3x^2 - 2x) \div x$$
    Solution
    Let us first factorize the given polynomial $$3x^2-2x$$ by finding the HCF of all the terms as follows:

    $$3x^{ 2 }=3\times x\times x\\ 2x=2\times x$$

    Therefore, $$HCF=x$$

    Now, we factor out the HCF from each term of the polynomial $$3x^2-2x$$ as shown below:

    $$3x^{ 2 }-2x=x(3x-2)$$

    Let us now divide the polynomial $$3x^2-2x$$ by the monomial $$x$$:

    $$\dfrac { 3x^{ 2 }-2x }{ x } =\dfrac { x(3x-2) }{ x } =3x-2$$

    Hence, $$(3x^{ 2 }-2x)\div x=3x-2$$.
  • Question 10
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$(3p^3 - 9p^2q - 6pq^2) \div (-3p)$$
    Solution
    We divide the given polynomial $$3p^3-9p^2q-6pq^2$$ by the monomial $$-3p$$ as shown below:

    $$\Rightarrow \dfrac { 3p^{ 3 }-9p^{ 2 }q-6pq^{ 2 } }{ -3p } \\ =\dfrac { 3p^{ 3 } }{ -3p } -\dfrac { 9p^{ 2 }q }{ -3p } -\dfrac { 6pq^{ 2 } }{ -3p } \\ =-\dfrac { 3p^{ 3 } }{ 3p } +\dfrac { 9p^{ 2 }q }{ 3p } +\dfrac { 6pq^{ 2 } }{ 3p } \\ =-\left( \dfrac { 3\times p\times p\times p }{ 3p }  \right) -\left( \dfrac { 3\times 3\times p\times p\times q }{ 3p }  \right) +\left( \dfrac { 2\times 3\times p\times q\times q }{ 3p }  \right) \\ =-p^{ 2 }+3pq+2q^{ 2 }$$

    Hence, $$\dfrac { 3p^{ 3 }-9p^{ 2 }q-6pq^{ 2 } }{ -3p } =2q^{ 2 }+3pq-p^{ 2 }$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now