Self Studies

Understanding Quadrilaterals Test - 22

Result Self Studies

Understanding Quadrilaterals Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The diagonals AC & BD of parallelogram ABCD intersect each other at P of $$\angle DAC = 40^o$$ & $$\angle APB = 80^o$$. Then $$\angle DBC$$ is equal to ___ .

    Solution
    ABCD in parallelogram

    $$AD || BC         \therefore \angle D AC = \angle BCA$$

    $$\angle APB = \angle ACB + \angle DBC$$ (Exterior angle of a triangle)

    $$\angle DBC = \angle APB - \angle ACB$$

    $$\angle DBC = 80^o - \angle DAC$$

    $$\angle DBC = 80^o - 40^o$$

    $$\angle DBC = 40^o$$

  • Question 2
    1 / -0
    In $$\triangle $$ABC, BDEF and FDCE are parallelogram. Which of the following is correct?

    Solution
    BDEF & FDCD are parallelogram
    BF || DE, BF || DE, & FD || CE & CD || FE
    $$\angle BDF = \angle EFD,$$ & $$\angle DFE = \angle DCE$$
    $$\angle FBD = \angle FED$$ & $$\angle FED = \angle FED = \dfrac{1}{2} \angle FDC$$  (parallelogram purpose)
    $$\triangle FDB$$ & $$\triangle EDC$$ are circular and conguent triangles.
    $$\because BD = BC$$
  • Question 3
    1 / -0
    PQRS is a parallelogram, the bisector of $$\angle $$P also bisects SQ, PQ = 5 cm. Find PS.

    Solution
    If only one side of a parallelogram is given, then it's not possible to find out the other pair of opposite sides of a parallelogram. The information is incomplete.
  • Question 4
    1 / -0
    In a parallelogram PQRS, find $$\angle RSQ$$ if $$\angle SPQ = 70^o$$ & $$\angle RQS = 60^o$$.

    Solution
    Opposite angles of a parallelogram are equal
    $$\therefore \angle SPQ = \angle SRQ = 70^o$$
    In $$\triangle SQR, \angle RSQ + \angle SQR + \angle SRQ = 180^o$$
    $$\angle RSQ = 180- 60 - 70$$
    $$RSQ = 50^o$$
  • Question 5
    1 / -0
    The value of $$xy$$ for parallelogram $$ABCD$$ is :

    Solution
    Opposite angles in a parallelogram are equal, implying $$\angle ADC = \angle ABC$$
    $$\therefore x + y = 112 ...(1)$$
    Also, $$\angle DAC = \angle BCA$$ since they are alternate angles.
    $$\therefore x - y = 42 ...(2)$$
    Adding equations (1) and (2), we get 
    $$2x = 154$$ or $$x = 77$$
    $$\Rightarrow y = 77 - 42 = 35$$
    Therefore, $$xy = 77 \times 35 = 2695$$
  • Question 6
    1 / -0
    If ABCD is a parallelogram, then how are the angles 'x' and 'y' related?

  • Question 7
    1 / -0
    In a parallelogram $$ABCD$$, $$AB=4\ cm$$ and $$BC = 7\ cm$$. Each of its diagonals is less than which of the given options?
    Solution
    For a parallelogram ABCD,
    $$diagonal\quad AC>AB+BC\\ AC>7+4\\ AC>11cm$$
    So, option D is correct.
  • Question 8
    1 / -0
    The perimeter of a parallelogram,whose one side measures $$12$$ inches, is 72 inches. Find the length of its other three sides.
  • Question 9
    1 / -0
    In figure, if $$ABCD$$ is a parallelogram, $$\angle ADE = 40^{\circ}$$, and $$\angle C = 110^{\circ}$$, calculate the measure of $$\angle BED$$.

    Solution
    Given, $$\angle$$ $$C$$ $$=$$ $$110^o, \angle ADE = 40^o$$ 
    $$\angle$$ $$D=\angle B$$    {Opposite angle}
    Also, 
    $$\angle D + \angle C = 180^o$$         {because these interior angles lie on the same side of the transversal}
    $$\angle D=180^o-110^o = 70^o$$ 

    Therefore,
    $$\angle$$ $$EDC =\angle D- \angle ADE = 70^o-40^o = 30^o$$ 

    $$\angle$$ $$EBC = \angle B = 70^o$$, $$\angle$$ $$DCB = 110^o$$

    Therefore,
     $$\angle$$ $$BED = 360^o-110^o-70^o-30^o = 150^o$$      {Sum of angle of quadrilateral EBCD = $$360^o$$}
  • Question 10
    1 / -0
    In the given figure, find $$\angle BDC$$.

    Solution
    Let given quadrilateral $$ABCD$$ is a parallelogram.
    Then, $$AB$$ is parallel to $$CD$$ and $$AD$$ is parallel to $$BC$$     (Opposite sides of parallelogram are parallel)
    $$\Rightarrow \angle$$DAB $$=$$ $$\angle$$BCD     (Opposite angles of parallelogram are equal)
    Since, it is given that $$\angle$$DAB $$=$$75$$^\circ$$. 
    Then, $$\angle$$BCD $$=$$ 75$$^\circ$$      ----  (1)
    $$\Rightarrow$$   $$\angle$$DBC = 60$$^\circ$$   ---- (2)    (Given)
    In $$\triangle$$DCB,
    $$\angle$$BDC + $$\angle$$BCD + $$\angle$$DBC $$= 180$$$$^\circ$$
    $$\angle$$BDC + 75$$^\circ$$ + 60$$^\circ$$$$ =$$ 180$$^\circ$$       [From (1) and (2) ]
    $$\angle$$BDC $$=$$ 180$$^\circ$$ - 135$$^\circ$$
    $$\therefore$$  $$\angle BDC = 45^\circ$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now