Self Studies

Understanding Quadrilaterals Test - 22

Result Self Studies

Understanding Quadrilaterals Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The diagonals AC & BD of parallelogram ABCD intersect each other at P of DAC=40o\angle DAC = 40^o & APB=80o\angle APB = 80^o. Then DBC\angle DBC is equal to ___ .

    Solution
    ABCD in parallelogram

    ADBC    DAC=BCAAD || BC         \therefore \angle D AC = \angle BCA

    APB=ACB+DBC\angle APB = \angle ACB + \angle DBC (Exterior angle of a triangle)

    DBC=APBACB\angle DBC = \angle APB - \angle ACB

    DBC=80oDAC\angle DBC = 80^o - \angle DAC

    DBC=80o40o\angle DBC = 80^o - 40^o

    DBC=40o\angle DBC = 40^o

  • Question 2
    1 / -0
    In \triangle ABC, BDEF and FDCE are parallelogram. Which of the following is correct?

    Solution
    BDEF & FDCD are parallelogram
    BF || DE, BF || DE, & FD || CE & CD || FE
    BDF=EFD,\angle BDF = \angle EFD, & DFE=DCE\angle DFE = \angle DCE
    FBD=FED\angle FBD = \angle FED & FED=FED=12FDC\angle FED = \angle FED = \dfrac{1}{2} \angle FDC  (parallelogram purpose)
    FDB\triangle FDB & EDC\triangle EDC are circular and conguent triangles.
    BD=BC\because BD = BC
  • Question 3
    1 / -0
    PQRS is a parallelogram, the bisector of \angle P also bisects SQ, PQ = 5 cm. Find PS.

    Solution
    If only one side of a parallelogram is given, then it's not possible to find out the other pair of opposite sides of a parallelogram. The information is incomplete.
  • Question 4
    1 / -0
    In a parallelogram PQRS, find RSQ\angle RSQ if SPQ=70o\angle SPQ = 70^o & RQS=60o\angle RQS = 60^o.

    Solution
    Opposite angles of a parallelogram are equal
    SPQ=SRQ=70o\therefore \angle SPQ = \angle SRQ = 70^o
    In SQR,RSQ+SQR+SRQ=180o\triangle SQR, \angle RSQ + \angle SQR + \angle SRQ = 180^o
    RSQ=1806070\angle RSQ = 180- 60 - 70
    RSQ=50oRSQ = 50^o
  • Question 5
    1 / -0
    The value of xyxy for parallelogram ABCDABCD is :

    Solution
    Opposite angles in a parallelogram are equal, implying ADC=ABC\angle ADC = \angle ABC
    x+y=112...(1)\therefore x + y = 112 ...(1)
    Also, DAC=BCA\angle DAC = \angle BCA since they are alternate angles.
    xy=42...(2)\therefore x - y = 42 ...(2)
    Adding equations (1) and (2), we get 
    2x=1542x = 154 or x=77x = 77
    y=7742=35\Rightarrow y = 77 - 42 = 35
    Therefore, xy=77×35=2695xy = 77 \times 35 = 2695
  • Question 6
    1 / -0
    If ABCD is a parallelogram, then how are the angles 'x' and 'y' related?

  • Question 7
    1 / -0
    In a parallelogram ABCDABCD, AB=4 cmAB=4\ cm and BC=7 cmBC = 7\ cm. Each of its diagonals is less than which of the given options?
    Solution
    For a parallelogram ABCD,
    diagonalAC>AB+BCAC>7+4AC>11cmdiagonal\quad AC>AB+BC\\ AC>7+4\\ AC>11cm
    So, option D is correct.
  • Question 8
    1 / -0
    The perimeter of a parallelogram,whose one side measures 1212 inches, is 72 inches. Find the length of its other three sides.
  • Question 9
    1 / -0
    In figure, if ABCDABCD is a parallelogram, ADE=40\angle ADE = 40^{\circ}, and C=110\angle C = 110^{\circ}, calculate the measure of BED\angle BED.

    Solution
    Given, \angle CC == 110o,ADE=40o110^o, \angle ADE = 40^o 
    \angle D=BD=\angle B    {Opposite angle}
    Also, 
    D+C=180o\angle D + \angle C = 180^o         {because these interior angles lie on the same side of the transversal}
    D=180o110o=70o\angle D=180^o-110^o = 70^o 

    Therefore,
    \angle EDC=DADE=70o40o=30oEDC =\angle D- \angle ADE = 70^o-40^o = 30^o 

    \angle EBC=B=70oEBC = \angle B = 70^o, \angle DCB=110oDCB = 110^o

    Therefore,
     \angle BED=360o110o70o30o=150oBED = 360^o-110^o-70^o-30^o = 150^o      {Sum of angle of quadrilateral EBCD = 360o360^o}
  • Question 10
    1 / -0
    In the given figure, find BDC\angle BDC.

    Solution
    Let given quadrilateral ABCDABCD is a parallelogram.
    Then, ABAB is parallel to CDCD and ADAD is parallel to BCBC     (Opposite sides of parallelogram are parallel)
    \Rightarrow \angleDAB == \angleBCD     (Opposite angles of parallelogram are equal)
    Since, it is given that \angleDAB ==75^\circ
    Then, \angleBCD == 75^\circ      ----  (1)
    \Rightarrow   \angleDBC = 60^\circ   ---- (2)    (Given)
    In \triangleDCB,
    \angleBDC + \angleBCD + \angleDBC =180= 180^\circ
    \angleBDC + 75^\circ + 60^\circ= = 180^\circ       [From (1) and (2) ]
    \angleBDC == 180^\circ - 135^\circ
    \therefore  BDC=45\angle BDC = 45^\circ

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now