Self Studies

Cubes and Cube Roots Test - 21

Result Self Studies

Cubes and Cube Roots Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the cube root of each of the following numbers by prime factorisation method: 110592110592
    Solution
    On prime factorising, we get,

    110592=2×2×2×2×2×2×2×2×2×2×3×2×3×2×3 110592 = \underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times3}\times\underline{2\times3}\times\underline{2\times3}

                 =8×8×8×6×6×6= 8\times8\times8\times6\times6\times6

                =83×63= 8^3\times6^3.

    Then, cube root of 110592110592 is:

    1105923=83×633=8×6=48\sqrt[3]{110592}=\sqrt[3]{8^3 \times 6^3}= 8\times6=48.

    Therefore, 4848 is the required solution.

    Hence, option BB is correct.

  • Question 2
    1 / -0
    The cube root of 729 \displaystyle -729 is:
    Solution
    Prime factorising, we get,

    729=(9)×(9)×(9)729=(9)\times(9)\times (9)

    But 729=(9)×(9)×(9)-729=(-9)\times(-9)\times(-9)

    Then,

    7293\sqrt[3]{-729} =9×9×93=9=\sqrt[3]{-9\times -9\times -9}=-9

    Therefore, cube root of 729-729 is 9-9

    Hence, option BB is correct.
  • Question 3
    1 / -0
    The cube root of 35937 35937 is:
    Solution

    On prime factorising, we get,

    35937=(3×3×3)×(11×11×11)35937=(3\times3\times3)\times(11\times11\times11)

                      =33×113= 3^3 \times 11^3.

    Then, cube root of 3593735937 is:

    359373=33×1133\sqrt[3]{35937}=\sqrt[3]{3^3 \times 11^3}

    =3×11= 3\times 11

    =33=33.

    Therefore, option AA is correct.

  • Question 4
    1 / -0
    Find the value of: 40963\displaystyle \sqrt[3]{4096}.
    Solution

    On prime factorising, we get,

    4096=2×2×2×2×2×2×2×2×2×2×2×24096=\underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}

              =23×23×23×23=2^3\times 2^3\times 2^3\times 2^3.

    Then, value of 40963\sqrt[3]{4096} is:

    40963=23×23×23×233=2×2×2×2=16\sqrt[3]{4096}=\sqrt[3]{2^3 \times 2^3 \times 2^3 \times 2^3}= 2\times2\times2\times2=16.


    Therefore, option DD is correct.

  • Question 5
    1 / -0
    Evaluate: 13313\displaystyle \sqrt[3]{1331}.
    Solution

    On prime factorising, we get,

    1331=11×11×111331=\underline{11\times 11\times 11} =113=11^3.

    Therefore, value of 13313\sqrt[3]{1331} is:

    13313=(11)33=11\sqrt[3]{1331}=\sqrt[3]{(11)^3}= 11.

    Therefore, option AA is correct.

  • Question 6
    1 / -0
    13313=\displaystyle \sqrt[3]{-1331}=?
    Solution

    On prime factorising, we get,

    1331=11×11×111331=\underline{11\times 11\times 11} =113=11^3.

    Then, 1331-1331 =(11)3=(-11)^3.

    Therefore, value of 13313\sqrt[3]{-1331} is:

    13313=(11)33=11\sqrt[3]{-1331}=\sqrt[3]{(-11)^3}= -11.

    Therefore, option BB is correct.

  • Question 7
    1 / -0
    Find the cube root of 8000-8000.
    Solution

    On prime factorising, we get,

    8000=2×2×2×2×2×2×5×5×58000=\underline{2\times 2\times 2}\times \underline{2\times2\times2} \times \underline{5\times5\times5} =23×23×53=203=2^3\times 2^3 \times 5^3=20^3.

    Then, 8000-8000 =(20)3=(-20)^3.

    Therefore, value of 80003\sqrt[3]{-8000} is:

    80003=(20)33=20\sqrt[3]{-8000}=\sqrt[3]{(-20)^3}= -20.

    Therefore, option BB is correct.

  • Question 8
    1 / -0
    270003=\sqrt[3]{-27000}=?
    Solution

    On prime factorising, we get,

    27000=3×3×3×2×2×2×5×5×527000=\underline{3\times 3\times 3}\times \underline{2\times2\times2}\times \underline{5\times5\times5} =23×33×53=303=2^3\times3^3\times5^3=30^3.

    Then, 27000-27000 =(30)3=(-30)^3.

    Therefore, value of 270003\sqrt[3]{-27000} is:

    270003=(30)33=30\sqrt[3]{-27000}=\sqrt[3]{(-30)^3}= -30.

    Therefore, option BB is correct.

  • Question 9
    1 / -0
    What number must be multiplied to 69126912, so that the product becomes a perfect cube?
    Solution

    Prime factorising 69126912, we get,

    6912=2×2×2×2×2×2×2×2×3×3×36912 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3

              =28×33= 2 ^8 \times 3 ^3.

    We know, a perfect cube has multiples of 33 as powers of prime factors.

    Here, number of 22's is 88 and number of 33's is 33.

    So we need to multiply another 22 to the factorization to make 69126912 a perfect cube.

    Hence, the smallest number by which 69126912 must be multiplied to obtain a perfect cube is 22.

    Hence, option AA is correct.

  • Question 10
    1 / -0
    What is the value of (64×729 )3=\displaystyle \sqrt[3]{\left (64\times 729  \right )}=?
    Solution

    On prime factorisation of the numbers individually, we get,

    64=2×2×2×2×2×264=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 } =23×23=43 =2^3 \times 2^3=4^3.


    729=3×3×3×3×3×3729=\underline { 3 \times 3 \times 3 } \times \underline { 3 \times 3\times 3 } =33×33=93=3^3 \times 3^3=9^3.


    Therefore,

    64×7293 \sqrt [ 3 ]{ 64 \times 729 } =43×933= \sqrt [ 3 ]{4^3 \times 9^3 } =4×9=36=4\times9=36.


    Hence, option CC is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now