Self Studies

Cubes and Cube Roots Test - 21

Result Self Studies

Cubes and Cube Roots Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the cube root of each of the following numbers by prime factorisation method: $$110592$$
    Solution
    On prime factorising, we get,

    $$ 110592 = \underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times3}\times\underline{2\times3}\times\underline{2\times3}$$

                 $$= 8\times8\times8\times6\times6\times6$$

                $$= 8^3\times6^3$$.

    Then, cube root of $$110592$$ is:

    $$\sqrt[3]{110592}=\sqrt[3]{8^3 \times 6^3}= 8\times6=48$$.

    Therefore, $$48$$ is the required solution.

    Hence, option $$B$$ is correct.

  • Question 2
    1 / -0
    The cube root of $$ \displaystyle -729$$ is:
    Solution
    Prime factorising, we get,

    $$729=(9)\times(9)\times (9)$$

    But $$-729=(-9)\times(-9)\times(-9)$$

    Then,

    $$\sqrt[3]{-729}$$ $$=\sqrt[3]{-9\times -9\times -9}=-9$$

    Therefore, cube root of $$-729$$ is $$-9$$

    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    The cube root of $$ 35937$$ is:
    Solution

    On prime factorising, we get,

    $$35937=(3\times3\times3)\times(11\times11\times11)$$

                      $$= 3^3 \times 11^3$$.

    Then, cube root of $$35937$$ is:

    $$\sqrt[3]{35937}=\sqrt[3]{3^3 \times 11^3}$$

    $$= 3\times 11$$

    $$=33$$.

    Therefore, option $$A$$ is correct.

  • Question 4
    1 / -0
    Find the value of: $$\displaystyle \sqrt[3]{4096}$$.
    Solution

    On prime factorising, we get,

    $$4096=\underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}$$

              $$=2^3\times 2^3\times 2^3\times 2^3$$.

    Then, value of $$\sqrt[3]{4096}$$ is:

    $$\sqrt[3]{4096}=\sqrt[3]{2^3 \times 2^3 \times 2^3 \times 2^3}= 2\times2\times2\times2=16$$.


    Therefore, option $$D$$ is correct.

  • Question 5
    1 / -0
    Evaluate: $$\displaystyle \sqrt[3]{1331}$$.
    Solution

    On prime factorising, we get,

    $$1331=\underline{11\times 11\times 11}$$ $$=11^3$$.

    Therefore, value of $$\sqrt[3]{1331}$$ is:

    $$\sqrt[3]{1331}=\sqrt[3]{(11)^3}= 11$$.

    Therefore, option $$A$$ is correct.

  • Question 6
    1 / -0
    $$\displaystyle \sqrt[3]{-1331}=$$?
    Solution

    On prime factorising, we get,

    $$1331=\underline{11\times 11\times 11}$$ $$=11^3$$.

    Then, $$-1331$$ $$=(-11)^3$$.

    Therefore, value of $$\sqrt[3]{-1331}$$ is:

    $$\sqrt[3]{-1331}=\sqrt[3]{(-11)^3}= -11$$.

    Therefore, option $$B$$ is correct.

  • Question 7
    1 / -0
    Find the cube root of $$-8000$$.
    Solution

    On prime factorising, we get,

    $$8000=\underline{2\times 2\times 2}\times \underline{2\times2\times2} \times \underline{5\times5\times5}$$ $$=2^3\times 2^3 \times 5^3=20^3$$.

    Then, $$-8000$$ $$=(-20)^3$$.

    Therefore, value of $$\sqrt[3]{-8000}$$ is:

    $$\sqrt[3]{-8000}=\sqrt[3]{(-20)^3}= -20$$.

    Therefore, option $$B$$ is correct.

  • Question 8
    1 / -0
    $$\sqrt[3]{-27000}=$$?
    Solution

    On prime factorising, we get,

    $$27000=\underline{3\times 3\times 3}\times \underline{2\times2\times2}\times \underline{5\times5\times5}$$ $$=2^3\times3^3\times5^3=30^3$$.

    Then, $$-27000$$ $$=(-30)^3$$.

    Therefore, value of $$\sqrt[3]{-27000}$$ is:

    $$\sqrt[3]{-27000}=\sqrt[3]{(-30)^3}= -30$$.

    Therefore, option $$B$$ is correct.

  • Question 9
    1 / -0
    What number must be multiplied to $$6912$$, so that the product becomes a perfect cube?
    Solution

    Prime factorising $$6912$$, we get,

    $$6912 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

              $$= 2 ^8 \times 3 ^3$$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$2$$'s is $$8$$ and number of $$3$$'s is $$3$$.

    So we need to multiply another $$2$$ to the factorization to make $$6912$$ a perfect cube.

    Hence, the smallest number by which $$6912$$ must be multiplied to obtain a perfect cube is $$2$$.

    Hence, option $$A$$ is correct.

  • Question 10
    1 / -0
    What is the value of $$\displaystyle \sqrt[3]{\left (64\times 729  \right )}=$$?
    Solution

    On prime factorisation of the numbers individually, we get,

    $$64=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 }$$ $$ =2^3 \times 2^3=4^3$$.


    $$729=\underline { 3 \times 3 \times 3 } \times \underline { 3 \times 3\times 3 } $$ $$=3^3 \times 3^3=9^3$$.


    Therefore,

    $$ \sqrt [ 3 ]{ 64 \times 729 }$$ $$= \sqrt [ 3 ]{4^3 \times 9^3 }$$ $$=4\times9=36$$.


    Hence, option $$C$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now