Self Studies

Algebraic Expressions and Identities Test - 26

Result Self Studies

Algebraic Expressions and Identities Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the square of:
    $$607 $$
    Solution

    $$607$$ can be written as $$600+7$$

    $$\therefore {607}^{2} = {(600 + 7)}^{2} $$
    It is the form of $$ {(a+b)}^{2} $$, where $$ a = 600, b = 7 $$
    Applying the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$
    $$  {607}^{2} = {(600 + 7)}^{2} = {600}^{2}  + { 7 }^{ 2 } +2\times 600 \times 7 = 360000 + 49 + 8400 = 368449 $$

  • Question 2
    1 / -0
    What is the missing term in the following product 
    $$\displaystyle \left ( 2a^{3}-3 \right )\left ( 5a^{3}-2 \right )=10a^{6}+$$_____+6
    Solution
    $$\displaystyle \left ( 2a^{3}-3 \right )\left ( 5a^{3}-2 \right )$$
    $$\displaystyle =2a^{3}\times \left ( 5a^{3}-2 \right )+\left ( -3 \right )\times \left ( 5a^{3}-2 \right )$$
    $$\displaystyle 10a^{6}-4a^{3}-15a^{3}+6$$
    $$\displaystyle =10a^{6}-19a^{3}+6$$
    $$\displaystyle =-19a^{3}$$
  • Question 3
    1 / -0
    Multiply $$2x$$, $$\dfrac{5y}{2}$$ and $$z^2$$
    Solution
    $$2x \times \dfrac{5y}{2} \times z^2 = 5xyz^2$$ 
  • Question 4
    1 / -0
    Find the product: $$\displaystyle \left( -3axy \right) \times \left( -15{ a }^{ 2 }{ xy }^{ 2 }z \right) $$
    Solution
    Required product $$=\displaystyle \left( -3axy \right) \times \left( -15{ a }^{ 2 }{ xy }^{ 2 }z \right) $$
    =$$\displaystyle \left( -3\times -15 \right) \times \left( a\times { a }^{ 2 } \right) \times \left( x\times x \right) \times \left( y\times { y }^{ 2 } \right) \times z$$
    $$\displaystyle =45{ a }^{ 3 }{ x }^{ 2 }{ y }^{ 3 }z$$.
  • Question 5
    1 / -0
    $$\displaystyle \left( x+8 \right) \left( x-8 \right) $$ is equal to
    Solution
    Required multiplication is
    $$=\displaystyle \left( x+8 \right) \left( x-8 \right) $$
    $$\displaystyle =x\left( x-8 \right) +8\left( x-8 \right) $$
    $$\displaystyle ={ x }^{ 2 }-8x+8x-64$$
    $$\displaystyle ={ x }^{ 2 }-64$$
  • Question 6
    1 / -0
    $$\displaystyle \left( \frac { 1 }{ 5 } x-\frac { 1 }{ 6 } y \right) \left( 5x+6y \right) $$ is equal to
    Solution
    Required multiplication
    $$=\displaystyle \left( \frac { 1 }{ 5 } x-\frac { 1 }{ 6 } y \right) \left( 5x+6y \right) $$
    $$\displaystyle =\frac { 1 }{ 5 } x\left( 5x+6y \right) -\frac { 1 }{ 6 } y\left( 5x+6y \right) $$
    $$\displaystyle =\left( \frac { 1 }{ 5 } x \right) \left( 5x \right) +\left( \frac { 1 }{ 5 } x \right) \left( 6y \right) +\left( -\frac { 1 }{ 6 } y \right) \left( 5x \right) +\left( -\frac { 1 }{ 6 } y \right) \left( 6y \right) $$
    $$\displaystyle ={ x }^{ 2 }+\frac { 6 }{ 5 } xy-\frac { 5 }{ 6 } xy-{ y }^{ 2 }$$

    $$\displaystyle ={ x }^{ 2 }+\frac { 36xy-25xy }{ 30 } -{ y }^{ 2 }$$

    $$={ x }^{ 2 }+\dfrac { 11xy }{ 30 } -{ y }^{ 2 }$$
  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \left(\frac{2x}{7}\, -\, \frac{7y}{4}\right)^{2}$$.
    Solution

    Given, $$\left(\dfrac{2x}{7}-\dfrac{7y}{4}\right)^{2}$$.

    We know, $$(a-b)^2=a^2+2ab+b^2$$.

    Then,

    $$\left(\dfrac{2x}{7}-\dfrac{7y}{4}\right)^{2}$$

    $$=(\dfrac{2x}{7})^2-2(\dfrac{2x}{7})(\dfrac{7y}{4})+(\dfrac{7y}{4})^2$$

    $$=\dfrac{4x^{2}}{49}- xy+ \dfrac{49y^{2}}{16} $$.

    Therefore, ption $$C$$ is correct.

  • Question 8
    1 / -0
    Evaluate: $$\displaystyle\left(\dfrac{7}{8}{x}\, +\, \dfrac{4}{5}{y}\right )^{2}$$.
    Solution

    Given, $$\left(\dfrac{7}{8}{x}+\dfrac{4}{5}{y}\right )^{2}$$.

    We know, $$(x+y)^2=x^2+2xy+y^2$$.

    Then,

    $$\left(\dfrac{7}{8}{x}+\dfrac{4}{5}{y}\right )^{2}$$

    $$=(\dfrac{7}{8}{x})^2+2(\dfrac{7}{8}{x})(\dfrac{4}{5}{y})+(\dfrac{4}{5}{y})^2$$

    $$=\dfrac{49}{64}{x^{2}} +\dfrac{7}{5}{xy}+\dfrac{16}{25}{y^{2}} $$.


    Therefore, option $$D$$ is correct.

  • Question 9
    1 / -0
    Evaluate: $$(4a\, +\, 3b)^{2}\, -\, (4a\, -\, 3b)^{2}\, +\, 48\, ab$$.
    Solution

    Given, $$(4a+3b)^{2} -(4a-3b)^{2}+48 ab$$.

    We know, $$(a+b)^2=a^2+2ab+b^2$$

    and $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(4a+3b)^{2} -(4a-3b)^{2}+48 ab$$
    $$=((4a)^2+2(4a)(3b)+(3b)^2)-((4a)^2-2(4a)(3b)+(3b)^2)+48ab$$
    $$=(4a)^2+2(4a)(3b)+(3b)^2-(4a)^2+2(4a)(3b)-(3b)^2+48ab$$
    $$=24ab+24ab+48ab$$
    $$=48ab+48ab$$
    $$=96ab$$.

    Therefore, option $$B$$ is correct.
  • Question 10
    1 / -0
    Find the square of the following number: $$998$$
    Solution
    $$(998)^2=(1000-2)^2$$

    Using, $$(a-b)^2=a^2-2ab+b^2$$, we get
    $$(998)^2 = (1000)^2-2(1000)2+2^2$$
    $$=1000000-4000+4$$
    $$=996004$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now