Self Studies

Circles Test - 20

Result Self Studies

Circles Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If A, B, C, D are four points such that $$ \angle BAC={ 30 }^{ \circ } $$ & $$\angle BDC={ 60 }^{ \circ },$$ then D is the center of the circle through A, B and C. The statement is
    Solution
    $$ Given-\\ A,\quad B,\quad C\quad \& \quad D\quad are\quad four\quad points\quad such\quad that\quad \angle BAC={ 30 }^{ o }\quad \& \quad \angle BDC={ 60 }^{ o }.\\ To\quad find\quad out-\\ if\quad D\quad is\quad the\quad centre\quad of\quad the\quad circle\quad which\quad passes\quad through\quad A,\quad B\quad \& \quad C.\\ Solution-\\ \angle BAC={ 30 }^{ o }\quad \& \quad \angle BDC={ 60 }^{ o }.\\ \therefore \quad \angle BDC=2\angle BAC.\\ We\quad know\quad that\quad the\quad angle\quad subtended\quad by\quad a\quad chord\quad at\quad the\quad \\ centre\quad of\quad a\quad circle\quad is\quad double\quad the\quad angle\quad at\quad the\quad circumference\quad \\ subtended\quad by\quad the\quad same\quad chord.\\ \therefore \quad \angle BDC\quad is\quad the\quad angle\quad at\quad the\quad centre\quad and\quad \angle BAC\quad is\quad the\\ angle\quad at\quad the\quad circumference\quad subtended\quad by\quad the\quad chord\quad BC.\\ So\quad D\quad is\quad the\quad centre\quad of\quad the\quad circle\quad which\quad passes\quad through\quad \\ A,\quad B\quad \& \quad C.\\ \therefore \quad The\quad statement\quad is\quad correct\quad by\quad fig\quad I\\ But\quad by\quad fig\quad II\quad this\quad is\quad not\quad true.\\ So\quad the\quad statement\quad is\quad not\quad always\quad true.\quad \quad \\ \\ Ans-\quad Option\quad A. $$

  • Question 2
    1 / -0
    In figure if  $$\angle AOB={ 90 }^{ o }\ and\ \angle ABC={ 30 }^{ o }$$ then angle CAO is equal to 

    Solution
    $$ AB\quad is\quad the\quad chord\quad of\quad a\quad circle\quad with\quad centre\quad O.\\ AB\quad subtends\quad \angle AOB={ 90 }^{ o }\quad to\quad the\quad centre\quad and\quad \angle ACB\quad to\quad \\ the\quad circumference.\\ \angle ABC={ 30 }^{ o }.\\ To\quad find\quad out\quad -\\ \angle CAO=?\\ Solution-\\ AB\quad subtends\quad \angle AOB={ 90 }^{ o }\quad to\quad the\quad centre\quad and\quad \angle ACB\quad to\quad \\ the\quad circumference.\\ \therefore \quad \angle ACB=\frac { 1 }{ 2 } \angle AOB=\frac { 1 }{ 2 } \times { 90 }^{ o }=45^{ o }.(The\quad angle,\quad subtended\quad \\ by\quad a\quad chord\quad to\quad the\quad circumference\quad of\quad a\quad circle,\quad is\quad half\quad of\quad \\ that\quad subtended\quad to\quad the\quad centre).\\ Now\quad in\quad \Delta ACB\quad \quad we\quad have\\ \angle ACB+\angle ABC\quad =45^{ o }+30^{ o }=75^{ o }.\\ \therefore \quad \angle BAC=\quad 180^{ o }-(\angle ACB+\angle ABC)=\quad 180^{ o }-75^{ o }=105^{ o }.\\ (angle\quad sum\quad property\quad of\quad triangles)\\ Now\quad in\quad \Delta AOB\quad we\quad have\quad AO=BO\quad (radii\quad of\quad the\quad same\quad circle).\\ \therefore \quad \angle OAB=\angle OBA\quad i.e\quad \angle OAB+\angle OBA=2\angle OAB.\\ So\angle AOB+\angle OAB+\angle OBA=\angle AOB+2\angle OAB=180^{ o }.\\ (angle\quad sum\quad property\quad of\quad triangles).\\ i.e\quad { 90 }^{ o }+2\angle OAB=180^{ o }\Longrightarrow \angle OAB={ 45 }^{ o }.\\ \therefore \quad \angle CAO=\angle BAC-\angle OAB=105^{ o }-45^{ o }=60^{ o }.\\ Ans-\quad Option\quad B.\\  $$ 
  • Question 3
    1 / -0
    State true or false:
    A circle of radius $$3$$cm can be drawn through two points $$A, B$$ such that $$AB = 6$$ cm. 
    Solution
    We know, diameter of a circle $$=2\times$$ radius of the circle.
    A circle with $$AB=6cm$$ as diameter will have its radius equal to $$3cm$$.
    So option $$B$$ is the right answer.
  • Question 4
    1 / -0
    $$AD$$ is a diameter of a circle and $$AB$$ is a chord. If $$AD = 34\> cm, AB = 30\ cm$$, the distance of $$AB$$ from the centre of the circle is

    Solution

    It is given that, Diameter, $$AD = 34$$ cm and chord, $$AB = 30$$ cm

    Draw a perpendicular $$ON$$ from $$O$$ to $$AB$$. It meets $$AB$$ at $$N$$.

    $$ \therefore$$ Radius, $$AO=\dfrac { 1 }{ 2 } AD=\dfrac { 1 }{ 2 } \times 34$$ cm $$=17$$ cm.

    $$\because ON\bot AB$$

    $$ \therefore ON$$ bisects $$AB$$ at $$N$$ and $$\angle ANO=90^0$$

    So, $$AN=\dfrac { 1 }{ 2 }AB=\dfrac { 1 }{ 2 } \times 30$$ cm $$=15$$ cm

    Now, $$AO=17$$ cm, $$AN=15$$ cm and $$\angle ANO=90^0$$ 

    $$\therefore \Delta AON$$ is a right one with hypotenuse $$AO.$$ 

    So, by pythagoras theorem, we have

    $${ AO }^{ 2 }-{ AN }^{ 2 }={ ON }^{ 2 }\Rightarrow { ON }^{ 2 }={ (17 }^{ 2 }{ -15 }^{ 2 })\ { cm }^{ 2 }$$ 

    $$ \Rightarrow ON=8$$ cm

    So, $$AB$$ is at a distance of $$8$$ cm from the centre $$O$$. 

  • Question 5
    1 / -0
    If $$AB = 12$$ cm, $$BC = 16$$ cm and $$AB$$ is perpendicular to $$BC$$, then the radius of the circle passing through the points $$A$$, $$B$$ and $$C$$ is:
    Solution

    Given- $$A, B$$ &  $$C$$ are points such that $$AB=12cm$$ and $$BC=16cm$$  and $$BC\bot AB$$.

    To find out- the radius of the circle passing through $$A, B$$ &  $$C=?$$

    Solution- $$BC\bot AB$$ i.e $$\angle ABC={ 90 }^{ 0 }$$ and $$\Delta ABC$$ is a right one with $$AC$$ as hypotenuse. $$\therefore  AC=\sqrt { { AB }^{ 2 }+{ BC }^{ 2 } } =\sqrt { { 12 }^{ 2 }+{ 16 }^{ 2 } } cm=20cm$$. So the circle passing through $$A, B$$ &  $$C$$ will have its  diameter as $$AC$$.

    $$\therefore$$  Its radius$$=\dfrac { 1 }{ 2 } \times 20cm=10cm.$$

    Ans- Option C.

  • Question 6
    1 / -0
    The angles of a cyclic quadrilateral $$ABCD$$ are $$A = (6x + 10) $$, $$B = (5x)$$, $$C = (x + y)$$, $$D = (3y -10)$$.
    Find $$x$$ and $$y$$, and hence find the values of the four angles.
    Solution
    As $$ABCD$$ is a cyclic quadrilateral, we have 
    $$\angle A+\angle C =180^o$$ .......(The sum of the opposite angles of a cyclic quadrilateral $$={ 180 }^{ o }$$)
    $$\implies$$ $$ 6x+ 10^o +x+y =180^o$$
    $$\implies$$ $$7x+y=170^o$$       .....(1)
    and $$\angle B+\angle D=180^o$$ ............(The sum of the opposite angles of a cyclic quadrilateral $$={ 180 }^{ o }$$)
    $$\implies$$ $$(3y-10) +5x =180^o$$
    $$\implies$$ $$ 3y+5x =190^o$$         ....(2).

    Solving (1) and (2), we have,
    $$x=20^o$$ 
    $$y=30^o$$
    $$A=6x+10 =6 \times 20^o +10^o =130^o$$
    $$B=5x=5 \times 20^o  =100^o$$
    $$ C =x+y =30^o+20^o=50^o$$
    $$D=3y-10 =3 \times30-10=80^o$$.

    Therefore, option $$B$$ is correct.

  • Question 7
    1 / -0
    In given figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of $$ \angle ACD+\angle BED. $$

    Solution
    $$ Given-\\ AOBEDC\quad is\quad a\quad polygon\quad inscribed\quad in\quad a\quad circle\quad with\quad centre\\ O\quad and\quad diameter\quad AOB.\\ To\quad find\quad out-\\ \angle ACD+\angle BED=?\\ Solution-\\ We\quad join\quad AE\quad \& \quad BC.\\ ACDE\quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle ACD+\angle AED={ 180 }^{ o }........(i)\\ Similarly\quad BCDE\quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle BED+\angle BCD={ 180 }^{ o }........(ii).\\ (\because \quad The\quad sum\quad of\quad the\quad opposite\quad pair\quad of\quad angles\quad of\quad \\ a\quad cyclic\quad quadrilateral={ 180 }^{ o }\quad )\\ Again\quad \angle ACB={ 90 }^{ o }=\angle AEB.........(iii\quad \& \quad iv)\quad \\ (\because \quad The\quad angle\quad subtended\quad by\quad the\quad diameter\quad of\quad a\quad circle\\ at\quad the\quad cicumference={ 90 }^{ o }).\\ Adding\quad (i),\quad (ii),\quad (iii)\quad \& \quad (iv)\quad we\quad get\\ \angle ACD+\angle AED+\angle BED+\angle BCD+\angle ACB+\angle AEB={ 180 }^{ o }+{ 180 }^{ o }+{ 90 }^{ o }+{ 90 }^{ o }={ 540 }^{ o }\\ \Longrightarrow (\angle ACD+\angle BED)+(\angle BCD+\angle BCD)+(\angle AED+\angle AEB)={ 540 }^{ o }\\ \Longrightarrow (\angle ACD+\angle BED)+\angle ACD+\angle BED={ 540 }^{ o }\\ \Longrightarrow 2(\angle ACD+\angle BED)={ 540 }^{ o }\\ \Longrightarrow \angle ACD+\angle BED={ 270 }^{ O }.\\ Ans-\quad Option\quad B.\\ \\ \\ \\  $$ 

  • Question 8
    1 / -0
    If the sum of the circumferences of two circles with radii $$R_1$$ and $$ R_2$$ is equal to the circumference of a circle of radius $$R$$, then
    Solution
    The  circumference of circle with radius $${ R }_{ 1 }=2\pi { R }_{ 1 }$$.
    and the circumference of circle with radius$$ { R }_{ 2 }=2\pi { R }_{ 2 }.$$ 
    $$\therefore$$ The Sum of Circumferences, $$Sum=2\pi \left( { R }_{ 1 }+{ R }_{ 2 } \right)$$ .
    Again the circumference of circle with radius $${ R }=2\pi { R }.$$
    $$ \therefore$$ By given condition,
    $$ 2\pi \left( { R }_{ 1 }+{ R }_{ 2 } \right) =2\pi { R }\Longrightarrow { R }_{ 1 }+{ R }_{ 2 }=R$$.
  • Question 9
    1 / -0
    Area of the largest triangle that can be inscribed in a semi-circle of radius $$r$$ units is
    Solution
    The area of a triangle is equal to the base times the height.
    In a semi circle, the diameter is the base of the semi-circle.
    This is equal to $$2\times r$$ (r = the radius)
    If the triangle is an isosceles triangle with an angle of $$45^\circ$$ at each end, then the height of the triangle is also a radius of the circle.
    A = $$\frac{1}{2} \times b \times h$$ formula for the area of a triangle becomes
    A = $$\frac{1}{2}\times 2 \times r \times r$$ because:
    The base of the triangle is equal to $$2\times r$$
    The height of the triangle is equal to r
    A = $$\frac{1}{2} \times 2 \times r \times r$$ becomes:
    A = $$r^2$$

  • Question 10
    1 / -0
    A quadrilateral $$ABCD$$ is inscribed in a circle such that $$AB$$ is a diameter and $$ \angle ADC={ 130 }^{ o }$$, then $$m\angle BAC= $$?
    Solution
    Given, $$ABCD$$ is a quadrilateral inscribed in a circle.
    Also, $$ \angle ADC={ 130 }^{ o }$$.
    We have to find: $$\angle BAC$$.

    Now join $$AD$$. 
    Then, $$\angle ADC+\angle ABC={ 180 }^{ o }$$  ....(The sum of the opposite angles of a cyclic quadrilateral $$={ 180 }^{ o }$$) 
    i.e. $$ \angle ABC={ 180 }^{ o }-\angle ADC= { 180 }^{ o }-{ 130 }^{ o }={ 50 }^{ o }$$.

    So, in $$\Delta ABC$$, we have 
    $$\angle BAC={ 180 }^{ o }$$ $$-(\angle ACB+\angle ABC)$$ ...(Since $$AB$$ is the diameter, the angle subtended by the diameter of a circle at the circumference $$=90^o$$ i.e. $$\angle BAC=90^o$$)
    $$={ 180 }^{ o }-({ 50 }^{ o }+{ 90 }^{ o })={ 40 }^{ o }$$.

    Therefore, option $$C$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now