Self Studies

Circles Test - 21

Result Self Studies

Circles Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the below diagram, $$O$$ is the centre of the circle, $$AC$$ is the diameter and if $$\angle APB=120^0$$, then $$\angle BQC$$ is

    Solution
    Quadrilateral $$APBC$$ is a cyclic quadrilateral.
    We know, the opposite angles of a cyclic quadrilateral are supplementary.
    Hence, $$\angle APB + \angle ACB = 180^0$$.

    Since, $$\angle APB = 120^0$$
    $$\Rightarrow \angle ACB =180^o-120^o= 60^0$$.

    Here, $$AC$$ is a diameter and hence $$\angle ABC = 90^0$$.
    Thus, in $$ \Delta ABC,$$
    $$\angle CAB+\angle ABC+\angle ACB=180^o$$ ...[Angle sum property]
    $$\implies$$ $$\angle CAB+90^o+60^o=180^o$$
    $$\implies$$ $$ \angle CAB = 180^0 - 90^0 - 60^0 = 30^0$$.

    Now, quadrilateral $$ABQC$$ is another cyclic quadrilateral.
    So, $$\angle CAB + \angle CQB = 180^0$$ ...[Opposite angles of a cyclic quadrilateral]
    $$\therefore \angle CQB=180^o-30^o = 150^0$$.

    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    In the figure $$AD||BC;\ \angle CAB = 45^{\circ} ;\ \angle DBC = 55^{\circ}$$, then $$\angle DCB$$ equals:

    Solution
    Here, $$\angle DAC = \angle DBC = 55^o$$ ...(angles in the same segment).

    Then, $$\angle DAB = \angle DAC + \angle CAB = 55^o+45^o=100^o$$.

    Now, $$\angle DAB + \angle DCB = 180^o$$ ...(opposite angles of cyclic quadrilateral $$ABCD$$)
    $$\Rightarrow \angle DCB =180^o-100^o= 80^o$$.

    Therefore, option $$B$$ is correct.
  • Question 3
    1 / -0
    Which of the following statement (s) is/ are true?
    Solution
    Radii of one circle are the same and two chords are equidistant from the center so by Pythagoras theorem, chords have to be equal.
    Since the chords are equal, so their distance from the center will also be equal, and hence congruent triangles will form always and so the chords will always subtend equal angles at the center.
    Also, the angle in a semicircle is a right angle.
  • Question 4
    1 / -0
    In the figure $$ \angle ADC={ 130 }^{ o } $$ and chord BC = chord BE. Find $$ \angle CBO $$.

    Solution

    $$ABCD$$ is a cyclic quadrilateral.

    Also, $$\angle ADC = 130^o$$.

    We know, opposite angles of a cyclic quadrilateral are supplementary.

    Then, $$\angle ADC  + \angle CBA = 180^o$$

    $$\angle CBO = \angle CBA = 180^o-30^o =50^\circ   $$.

    Therefore, option $$B$$ is correct.

  • Question 5
    1 / -0
    If $$O$$ is the centre of a circle, $$AB$$ its chord, $$C$$ is the mid point of $$AB$$ , then $$OAC$$ is
    Solution
    Line joining the midpoint of chord to the centre of circle is perpendicular to chord.

    $$\therefore OC \bot AB$$

    $$\therefore \angle DCA = 90^{\circ}$$

    Now,
    In $$\Delta OAC$$

    $$\angle OAC + \angle AOC + \angle OCA = 180^{\circ}$$   (Sum of interior angle of triangle is $$180^{\circ}$$)

    $$\Rightarrow \angle OAC + \angle AOC + 90^{\circ} = 180^{\circ}$$

    $$\angle OAC + \angle AOC = 180^{\circ} - 90^{\circ}$$

    $$\angle OAC + \angle AOC = 90^{\circ}$$

    $$\therefore \angle OAC < 90^{\circ}$$

    $$\therefore \angle OAC$$ is acute angle

  • Question 6
    1 / -0
    In the figure, $$\angle B$$ is equal to:

    Solution
    Since, $$APQD$$ is a cyclic quadrilateral,

    therefore, $$\angle A + \angle DQP = 180^{\circ}$$ ...[Opposite angles of cyclic quadrilateral are supplementary]

    $$\Rightarrow \angle DQP = 180^{\circ} - 85^{\circ} = 95^{\circ}$$.

    Now, $$\angle PQC = 180^{\circ} - \angle DQP = 85^{\circ}$$ ...[Straight line property].

    Also, $$PBCQ$$ is a cyclic quadrilateral,

    therefore, $$\angle PQC +\angle PBC =180^0$$  ...[Opposite angles of cyclic quadrilateral are supplementary]

    $$\Rightarrow \angle PBC = 180^{\circ} - 85^o = 95^o$$.

    Hence, option $$B$$ is correct.
  • Question 7
    1 / -0
    The angle made by the line from the centre with the chord which it bisects is:
  • Question 8
    1 / -0
    The greatest angle of a cyclic quadrilateral $$ABCD$$ in which $$\angle A = (2x-1)^o, \angle B = (y+5)^o, \angle C = (2y+15)^o$$ and $$\angle D = (4x-7)^o$$ is:
    Solution
    In cyclic quadrilateral, the sum of opposite angles $$= 180^o$$
    $$\Longrightarrow \angle A + \angle C = 180^o$$
    $$\Longrightarrow   2x -1+2y+15=180^o$$
    $$\Longrightarrow  x + y = 83$$                   ...(i).

    Also, $$ \angle B + \angle D = 180^o$$
    $$\Longrightarrow   4x+y=182$$                   ....(ii).

    Then, by solving (i) and (ii),
    $$x = 33$$ and $$y = 50$$.

    Thus, $$\angle A = 65^o, \angle B = 55^o, \angle C = 115^o, \angle D = 125^o$$.
    So, greatest angle $$\angle D = 125^0$$.
    Hence, option $$C$$ is correct.
  • Question 9
    1 / -0

    Statement 1: In given figure, if C is centre of the circle and $$\angle PQC = 25^{\circ}$$ and $$\angle PRC = 15^{\circ}$$, then $$\angle QCR $$ is $$40^{\circ}.$$

    Statement 2: Angle subtended by arc at the centre is twice angled subtended by it at circumference of the circle.

    Solution

    In $$\triangle PQC,$$

    We know $$PC = QC$$

    So, $$ \angle CQP = \angle CPQ$$

    $$\Rightarrow \angle CPQ = 25^\circ$$


    In $$\triangle PRC,$$

    We know $$PC = RC$$

    Hence $$\angle CRP = \angle CPR$$

    $$\therefore \angle CPR = 15^\circ$$


    Now,

    $$\angle QPR = \angle QPC + \angle CPR$$

                  $$= 25^\circ + 15^\circ$$

                  $$= 40^\circ$$


    We know "Angle subtended by an arc at the centre is double the angle subtended by the same arc at the circumference of a circle."


    Thus,

    $$∠QCR = 2 \times ∠QPR$$

                  $$= 2 \times  40^\circ$$

                  $$= 80^\circ$$


    Hence Statement 1 is false and Statement 2 is true.

  • Question 10
    1 / -0
    Find the smallest angle of a cyclic quadrilateral $$ABCD$$ in which $$\angle A= (2x-10)^o, \, \, \angle B=(2y-20)^o, \, \, \angle C= (2y+30)^o$$ and $$\angle D=(3x+10)^o.$$
    Solution

    Given $$ \angle A=(2x-10)^{\circ},\quad \angle B=(2y-20)^{\circ},\quad \angle C=(2y+30)^{\circ}$$ and $$\angle D=(3x+10)^{\circ}$$.

    We know, the sum of  the opposite  angles of  a  cyclic  quadrilateral  is  $$180^{\circ}$$.
    So $$ \angle A+\angle C=180^{\circ}$$
    $$\Rightarrow (2x-10+2y+30)^{\circ}=180^{\circ}$$
    $$\Rightarrow (2x+2y)^{\circ}=160^{\circ}\quad ------\left( 1 \right) $$

    $$ \& \quad \text{also,} \  \angle B+\angle D=180^{\circ}$$
    $$\Rightarrow (2y-20+3x+10)^{\circ}=180^{\circ}$$
    $$\Rightarrow (3x+2y)^{\circ}=190^{\circ}\quad ------\left( 2 \right) $$ .

    Subtracting $$\left( 1 \right)$$ from $$ \left( 2 \right) $$, we  get,
    $$ (3x-2x)^{\circ}=190^{\circ}-160^{\circ}$$
    $$\Rightarrow x^{\circ}=30^{\circ}$$.

    Using $$x^{\circ}=30^{\circ}$$ in $$ \left( 1 \right) $$, we  get,
    $$ (2y+2\times 30)^{\circ}=160^{\circ}$$
    $$\Rightarrow (2y+60)^{\circ}=160^{\circ}$$
    $$\Rightarrow (2y)^{\circ}=100^{\circ}$$
    $$\Rightarrow y^{\circ}=50^{\circ} $$.

    So, $$ \angle A=(2x-10)^{\circ}=(2\times30-10)^{\circ}=(60-10)^{\circ}={ 50 }^{ o }$$
    $$\angle B=(2y-20)^{\circ}=(2\times 50-20)^{\circ}=(100-20)^{\circ}={ 80 }^{ o }$$
    $$\angle C=(2y+30)^{\circ}=(2\times 50+30)^{\circ}=(100+30)^{\circ}={ 130 }^{ o }$$ 
    and $$\angle D=(3x+10)^{\circ}=(3\times 30+10)^{\circ}=(90+10)^{\circ}={ 100 }^{ o }$$.

    Hence, the smallest angle is $$\angle A=50^o$$.
    Therefore, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now