Given $$ \angle A=(2x-10)^{\circ},\quad \angle B=(2y-20)^{\circ},\quad \angle C=(2y+30)^{\circ}$$ and $$\angle D=(3x+10)^{\circ}$$.
We know, the sum of the opposite angles of a cyclic quadrilateral is $$180^{\circ}$$.
So $$ \angle A+\angle C=180^{\circ}$$
$$\Rightarrow (2x-10+2y+30)^{\circ}=180^{\circ}$$
$$\Rightarrow (2x+2y)^{\circ}=160^{\circ}\quad ------\left( 1 \right) $$
$$ \& \quad \text{also,} \ \angle B+\angle D=180^{\circ}$$
$$\Rightarrow (2y-20+3x+10)^{\circ}=180^{\circ}$$
$$\Rightarrow (3x+2y)^{\circ}=190^{\circ}\quad ------\left( 2 \right) $$ .
Subtracting $$\left( 1 \right)$$ from $$ \left( 2 \right) $$, we get,
$$ (3x-2x)^{\circ}=190^{\circ}-160^{\circ}$$
$$\Rightarrow x^{\circ}=30^{\circ}$$.
Using $$x^{\circ}=30^{\circ}$$ in $$ \left( 1 \right) $$, we get,
$$ (2y+2\times 30)^{\circ}=160^{\circ}$$
$$\Rightarrow (2y+60)^{\circ}=160^{\circ}$$
$$\Rightarrow (2y)^{\circ}=100^{\circ}$$
$$\Rightarrow y^{\circ}=50^{\circ} $$.
So, $$ \angle A=(2x-10)^{\circ}=(2\times30-10)^{\circ}=(60-10)^{\circ}={ 50 }^{ o }$$
$$\angle B=(2y-20)^{\circ}=(2\times 50-20)^{\circ}=(100-20)^{\circ}={ 80 }^{ o }$$
$$\angle C=(2y+30)^{\circ}=(2\times 50+30)^{\circ}=(100+30)^{\circ}={ 130 }^{ o }$$
and $$\angle D=(3x+10)^{\circ}=(3\times 30+10)^{\circ}=(90+10)^{\circ}={ 100 }^{ o }$$.
Hence, the smallest angle is $$\angle A=50^o$$.
Therefore, option $$B$$ is correct.