Self Studies

Circles Test - 22

Result Self Studies

Circles Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a circle of radius 17cm two parallel chords of the length 30cm and 16cm respectively are drawn on the opposite sides of the centre. Then  the distance between them  is
    Solution
    $$ Given-\\ PQ=30cm\quad \& \quad RS=16cm\quad are\quad the\quad chords\quad of\quad a\quad circle\quad of\quad \\ radius=17cm\quad with\quad centre\quad O.\\ Also\quad they\quad are\quad on\quad the\quad opposite\quad sides\quad of\quad O.\quad \quad \quad \\ PQ\parallel RS.\\ To\quad find\quad out\quad -\quad The\quad distance\quad between\quad PQ\quad \& \quad RS=?\\ the\quad Solution-\\ We\quad join\quad OP\quad \& \quad OR\quad and\quad drop\quad a\quad perpendicular\quad ON\quad from\quad O\\ to\quad RS\quad at\quad N.\\ Since\quad PQ\parallel RS,\quad ON\quad will\quad be\quad perpendicular\quad to\quad PQ\quad at\quad M.\\ \left( \angle ONR={ 90 }^{ o }=\angle OMP\quad as\quad they\quad are\quad corresponding\quad angles. \right) \\ So\quad the\quad distance\quad between\quad PQ\quad \& \quad RS=ON+OM=MN.\\ Here\quad PM=\frac { 1 }{ 2 } PQ=\frac { 1 }{ 2 } \times 30cm=15cm\quad since\quad \\ the\quad perpendicular\quad from\quad the\quad centre\quad of\quad a\quad circle\quad to\quad a\quad chord\quad \\ bisects\quad the\quad latter.\\ \quad Now\quad \Delta OPM\quad is\quad a\quad right\quad one\quad with\quad OP\quad as\quad hypotenuse.\\ \therefore \quad By\quad Pythagoras\quad theorem,\quad we\quad have\quad OM=\sqrt { { OP }^{ 2 }-{ PM }^{ 2 } } \\ =\sqrt { { 17 }^{ 2 }-{ 15 }^{ 2 } } cm=8cm.\\ Again\quad \quad RN=\frac { 1 }{ 2 } RS=\frac { 1 }{ 2 } \times 16cm=8cm\quad since\quad the\quad perpendicular\quad from\quad the\quad \\ centre\quad of\quad a\quad circle\quad to\quad a\quad chord\quad bisects\quad the\quad latter.\\ We\quad have,\quad \Delta ORN\quad is\quad a\quad right\quad one\quad with\quad OR\quad as\quad hypotenuse.\\ \therefore \quad By\quad Pythagoras\quad theorem,\quad we\quad have\quad ON=\sqrt { { OR }^{ 2 }-{ RN }^{ 2 } } \\ =\sqrt { { 17 }^{ 2 }-{ 8 }^{ 2 } } cm=15cm.\\ Now\quad the\quad distance\quad beteen\quad PQ\quad \& \quad RS=MN=ON-OM\\ =(15+8)cm=23cm.\\ Ans-\quad Option\quad C.\\ \\  $$ 

  • Question 2
    1 / -0
    In the given circle with centre $$'O'$$, the mid points of two equal chords $$AB$$ & $$CD$$ are $$K$$ & $$L$$, respectively. If $$\angle$$ $$OLK =$$ $$25^{\circ}$$, Then $$\angle$$ $$LKB$$ is equal to:

    Solution
    Given: $$O$$ is the center of the circle. $$K$$ and $$L$$ are mid points of chords $$AB$$ and $$CD$$, respectively.
    $$\therefore OK \perp AB$$ and $$OL \perp CD$$.             {The line joining the centre of a circle to the mid-point of a chord is perpendicular to the chord}
    As $$AB = CD$$.
    $$\therefore$$ $$OK = OL$$          ...(Equal chords are equidistant from centre)

    So, $$\bigtriangleup$$ $$OKL$$ is an isosceles triangle.
    $$\therefore \angle OKL = \angle OLK = 25^{\circ}$$ 

    Therefore, $$\angle LKB = \angle OKL + \angle OKB $$
                                     $$= 25^{\circ} + 90^{\circ} = 115^{\circ}$$

  • Question 3
    1 / -0
    In a circle of radius $$13$$cm, $$PQ$$ and $$RS$$ are two parallel chords of length $$24$$cm and l0cm respectively. The chords are on the same side of the centre then the distance between the chords  is?
    Solution



    $$OP=OR=13cm,PQ=24cm $$ and $$RS=10cm$$

    $$PM=12cm$$ and $$RN = 5cm$$      [perpendicular from the centre bisects the chord]
    In right angled triangle OMP and ONR ,by pythogoras theorem
    $${OP}^{2}={OM}^{2}+{MP}^{2}$$
    $$OM =\sqrt{{OP}^{2}-{MP}^{2}}$$
     $$OM =\sqrt{{13}^{2}-{12}^{2}}$$
    $$OM=5cm$$

    $${OR}^{2}={ON}^{2}+{RN}^{2}$$
    $$ON =\sqrt{{OR}^{2}-{RN}^{2}}$$
     $$ON =\sqrt{{13}^{2}-{5}^{2}}$$
    $$OM=12cm$$
    $$MN=ON-OM$$
    $$MN=12-5$$
    $$MN=7cm$$
    Therefore distance between the chords  is $$7 cm$$
    option A is the answer.

  • Question 4
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral. If $$\angle  A-\angle C=30^{\circ}$$, then $$ \angle  C =$$?
    Solution
    Given, $$ABCD$$ is a cyclic quadrilateral.
    We know, opposite angles of cyclic quadrilateral are supplementary.
    Then, $$\angle A+\angle C$$$$ =180^{\circ}$$ .......(i).
    But given, $$\angle A-\angle C $$$$ =30^{\circ}$$ .......(ii).

    (i) $$-$$ (ii), we get,
    $$2 \angle C=150^o$$
    $$\implies$$ $$\angle C=75^o$$.

    Hence, option $$C$$ is correct.
  • Question 5
    1 / -0
    Find the four angles of a cyclic quadrilateral ABCD in which $$\angle A=(2x-1)^o, \angle B=(y+5)^o, \angle C=(2y+15)^o$$ and $$\angle D(4x-7)^o$$
    Solution
    Given, $$ \angle A =\left ( 2x-1 \right )^{\circ}$$, $$ \angle B =\left ( y+5 \right )^{\circ}$$, $$ \angle C=\left ( 2y+15 \right )^{\circ}$$ and $$\angle D =\left ( 4x-7 \right )^{\circ}$$.

    In cyclic quadrilateral, the sum of opposite angles $$= 180^o$$
    $$\Rightarrow \angle A + \angle C = 180^o$$
    $$\Rightarrow \left ( 2x-1 \right )+\left (2y+15  \right )=180^{\circ}$$
    $$\Rightarrow 2x+2y=166^{\circ}\Rightarrow x+y=83$$    .....(1)

    Also, $$ \angle B + \angle D = 180^o$$
    $$\Rightarrow \left ( y+5 \right )+\left (4x-7  \right )=180^{\circ}$$
    $$\rightarrow 4x+y=182^{\circ}$$          ....(2)

    Substract (2) from (1), we get,
    $$\Rightarrow -3x=-99^o \Rightarrow x=33^o$$.

    Now, substitute $$x=33$$ in (1), we get,
    $$\Rightarrow 33^o+y=83^o \Rightarrow y=50^o$$.

    Hence,
    $$\angle A =\left ( 2x-1 \right )=2\times33-1=65^{\circ}$$
    $$ \angle B =\left ( y+5 \right )=50+5=55^{\circ}$$
    $$\angle C=\left ( 2y+15 \right )=2\times50+15=115^{\circ}$$
    $$\angle D =\left ( 4x-7 \right )=4\times33-7=125^{\circ}$$.

    Therefore, option $$D$$ is correct.

  • Question 6
    1 / -0
    In the given figure, $$POQ$$ is the diameter of the circle with center $$O$$. Quadrilateral $$ PQRS$$ is a cyclic quadrilateral and $$SQ$$ is joined. If $$\angle R = 138^\circ$$, then $$m\angle PQS$$ is:

    Solution

    Given- $$\overline { POQ }$$  is a diameter of a given circle. $$PQRS$$ is a cyclic quadrilateral. $$SQ$$ is joined. Also, $$\angle SRQ={ 138 }^{ \circ }$$.


    Since, $$ \overline { POQ }$$  is the diameter of the given circle, it subtends $$\angle PSQ$$ to the circumference at $$S$$, i.e. $$  \angle PSQ={ 90 }^{ \circ }$$ ...[ since it is an angle in a semicircle].


    Again,

    $$\angle QPS+\angle QRS=180^\circ$$ ...[ sum of opposite angles  of a cyclic quadrilateral is $${ 180 }^{ \circ }$$]

    $$\Rightarrow \angle QPS={ 180 }^{ \circ }-\angle QRS$$

    $$\Rightarrow \angle QPS={ 180 }^{ \circ }-138^{ \circ }$$

    $$\Rightarrow\angle QPS={ 42 }^{ \circ}$$.


     In $$\triangle PSQ,$$

    $$  \angle PQS +\angle PSQ+\angle QPS=180^\circ$$

                                     $$\angle PQS={ 180 }^{ \circ }-(\angle PSQ+\angle QPS)$$

                                                   $$={ 180 }^{ \circ }-({ 90 }^{ \circ }+{ 42 }^{ \circ })$$

                                                   $$={ 48 }^{ \circ }$$


    Hence, option $$C$$ is correct.

  • Question 7
    1 / -0
    In the given figure, $$ABCD$$ is a cyclic quadrilateral in which $$\angle BAD = 120^o$$. Then $$m\angle BCD$$ is:

    Solution
    Given, $$ABCD$$ is a cyclic quadrilateral
    and $$ \angle BAD={ 120 }^{ o }$$.

    Since, $$ ABCD$$ is a cyclic quadrilateral,
    $$ \therefore  \angle BCD+\angle BAD={ 180 }^{ o }$$ ...[Opposite angles of cyclic quadrilateral are supplementary].
    $$\implies \angle BCD={ 180 }^{ o }-\angle BAD\\={ 180 }^{ o }-{ 120 }^{ o }\\={ 60 }^{ o }$$.

    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    In the given figure, if $$\angle AOC=110^o$$, then the values of $$\angle D$$ and $$\angle B$$, respectively are:

    Solution
    Given, $$\angle AOC=110^o$$.
    By property of circles, we have $$\angle AOC=2\angle ADC$$
    $$\Rightarrow \angle ADC=110^o\div 2=55^o$$
    $$\Rightarrow$$ $$\angle D=55^o$$.

    Also, $$\angle B + \angle D=180^o$$ ...[Opposite angles of cyclic quadrilateral are supplementary]
    $$\implies$$ $$\angle B=180^o-\angle D=180^o-55^o=125^o$$.

    Hence, option '$$A$$ is correct.
  • Question 9
    1 / -0
    $$ ABCD$$ is a cyclic quadrilateral, then the angles of the quadrilateral in the same order are:
    Solution
    $$ABCD $$ is a cyclic quadrilateral. 
    In a cyclic quadrilateral, the sum of opposite angles is $$180^{\circ}$$ and sum of all the angles $$=$$ $$360^{\circ}$$

    Option 1: $$70^{\circ}, 120^{\circ}, 110^{\circ}, 60^{\circ}$$
    Sum of Opposite angles:
    $$\angle A + \angle C = 70 + 110 = 180^{\circ}$$
    and $$\angle B + \angle D = 120 + 60 = 180^{\circ}$$.
    The opposite angles are $$180^{\circ}$$ and sum of all the angles is $$360^{\circ}$$.

    Option 2: $$120^{\circ}, 110^{\circ}, 70^{\circ}, 60^{\circ}$$
    Sum of Opposite angles:
    $$\angle A + \angle C = 120 + 70 = 190^{\circ}\ne 180^o$$
    and $$\angle B + \angle D = 110 + 60 = 170^{\circ} \ne 180^o$$.
    The opposite angles are not $$180^{\circ}$$.

    Option 3: $$110^{\circ}, 700^{\circ}, 60^{\circ}, 100^{\circ}$$
    Sum of Opposite angles:
    $$\angle A + \angle C = 110 + 60 = 170^{\circ}\ne 180^o$$
    and $$\angle B + \angle D = 700 + 100 = 800^{\circ} \ne 180^o$$.
    The opposite angles are not $$180^{\circ}$$.

    Option 4: $$60^{\circ}, 120^{\circ}, 70^{\circ}, 110^{\circ}$$
    Sum of Opposite angles:
    $$\angle A + \angle C = 60 + 70 = 130^{\circ}\ne 180^o$$
    and $$\angle B + \angle D = 120 + 110 = 2300^{\circ} \ne 180^o$$.
    The opposite angles are not $$180^{\circ}$.

    Thus, the angles of the cyclic quadrilateral are: $$70^{\circ}, 120^{\circ}, 110^{\circ}, 60^{\circ}$$.
    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    In the figure, $$\angle BAD = 70^{\circ}$$, $$\angle ABD = 56^{\circ}$$ and $$\angle ADC = 72^{\circ}$$.
     Calculate (i) $$\angle BDC$$ (ii) $$\angle BCD$$ (iii) $$\angle CBD$$.

    Solution
    Given,
    $$\angle BAD=70^{\circ}$$, $$\angle ABD=56^{\circ}$$ and $$\angle ADC=72^{\circ}$$.

    ABCD is a cyclic quadrilateral.
    We know, the sum of opposite angles of a cyclic quadrilateral is $$180^o$$.
    Therefore,
    $$\angle BAD+\angle BCD=180^{\circ}$$
    $$\angle BCD =180^{\circ} - \angle BAD$$
     $$\angle BCD=180^{\circ}-70^{\circ}$$ $$=110^{\circ}$$  .....(i).

    Also, $$\angle ADC+\angle ABC=180^o$$
    $$72^{\circ}+\left( 56^{\circ}+\angle CBD \right)=180^{\circ}$$
    $$\angle CBD=180^{\circ}-128^{\circ}$$ $$=52^{\circ}$$ .....(ii).

    In $$\triangle BCD$$,
    $$\angle BCD+\angle DBC+\angle BDC=180^{\circ}$$ ...[Angle sum property]
    $$110^{\circ}+52^{\circ}+\angle BDC=180^{\circ}$$
    $$\angle BDC=18^{\circ}$$ ...(i).

    Therefore, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now