Given $$ABCD$$ is a cyclic quadrilateral.
$$AD$$ & $$BC$$ have been joined.
$$ \angle CAD={ 25 }^{ o }, \angle ACB=35^{ o }, \angle ABC={ 5 }0^{ o }.$$
$$ \angle CBD$$ & $$\angle CAD$$ are angles subtended by the chord $$CD$$ to the circumference.
$$ \therefore \angle CBD=\angle CAD={ 25 }^{ o }$$...[since the angles, subtended by a chord of a circle to the circumference of the same circle, a are equal].
Similarly, $$\angle ACB$$ & $$ \angle ADB$$ are angles subtended by the chord $$AB$$ to the circumference.
$$\therefore \quad \angle ACB=\angle ADB={ 35 }^{ o }$$ ...[since the angles, subtended by a chord of a circle to the circumference of the same circle, are equal].
Also, $$ \angle ADC$$ & $$\angle ABC$$ are angles subtended by the chord $$AB$$ to the circumference.
$$ \therefore \quad \angle ADC=\angle ABC={ 50 }^{ o }$$...[since the angles, subtended by a chord of a circle to the circumference of the same circle, are equal].
$$\therefore \angle BDC=\angle ADC+\angle ADB={ 50 }^{ o }+35^{ o }={ 85 }^{ o }.$$
Now $$ABCD$$ is a cyclic quadrilateral.
$$ \therefore$$ The sum of its opposite angles $$={ 180 }^{ o }.$$
So $$ \angle BAC+\angle BDC={ 180 }^{ o }$$
$$\Longrightarrow \angle BAC={ 180 }^{ o }-\angle BDC={ 180 }^{ o }-{ 85 }^{ o }=95^{ o }.$$
$$ \therefore \angle DAB=\angle BAC-\angle CAD=95^{ o }-25^{ o }=70^{ o }.$$
So, (i) $$\angle CBD=25^{ o }$$, (ii) $$\angle DAB=70^{ o }$$, (iii) $$ \angle ADB=35^{ o }$$.
Hence, Option $$C$$ is correct.