Self Studies

Circles Test - 23

Result Self Studies

Circles Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, $$\triangle XYZ$$ is inscribed in a circle with centre $$O$$. If the length of chord $$YZ$$ is equal to the radius of the circle $$OY$$, then $$\angle YXZ$$ is equal to 

    Solution

    O$$Y = OZ = radius = r$$

    Given $$YZ = r$$

    $$\implies \triangle OYZ $$ is equilateral

    $$\implies \angle YOZ = 60^\circ$$

    We know that angle made by a chord on any point on the circle is half the angle made by the chord at the center

    $$\implies \angle YXZ = \dfrac{\angle YOZ}{2}$$

    $$\implies \angle YXZ = \dfrac{60}{2} = 30^\circ$$

  • Question 2
    1 / -0
    In the given figure, $$ABCD$$ is a cyclic quadrilateral in which $$\angle CAD = 25^{o}, \angle ABC = 50^{o}$$ and $$\angle ACB = 35^{o}$$.
    Then: (i) $$\angle CBD$$ (ii) $$\angle DAB$$ (iii) $$\angle ADB$$ are respectively?

    Solution
    Given $$ABCD$$ is a cyclic quadrilateral.
    $$AD$$ & $$BC$$ have been joined.
    $$ \angle CAD={ 25 }^{ o }, \angle ACB=35^{ o }, \angle ABC={ 5 }0^{ o }.$$

    $$ \angle CBD$$ & $$\angle CAD$$ are angles subtended by the chord $$CD$$ to the circumference.
    $$ \therefore \angle CBD=\angle CAD={ 25 }^{ o }$$...[since the angles, subtended by a chord of a circle to the circumference of the same circle, a are equal].

    Similarly, $$\angle ACB$$ & $$ \angle ADB$$ are  angles subtended by the chord $$AB$$ to the circumference.
    $$\therefore \quad \angle ACB=\angle ADB={ 35 }^{ o }$$ ...[since the angles, subtended by a chord of a circle to the circumference of the same circle, are equal].

    Also, $$  \angle ADC$$ & $$\angle ABC$$ are angles  subtended by  the chord $$AB$$ to the circumference.
    $$ \therefore \quad \angle ADC=\angle ABC={ 50 }^{ o }$$...[since the angles, subtended by a chord of a circle to the circumference of the same circle, are equal].

    $$\therefore \angle BDC=\angle ADC+\angle ADB={ 50 }^{ o }+35^{ o }={ 85 }^{ o }.$$

    Now $$ABCD$$ is a cyclic quadrilateral.
    $$ \therefore$$ The sum of its opposite angles $$={ 180 }^{ o }.$$
    So $$ \angle BAC+\angle BDC={ 180 }^{ o }$$
    $$\Longrightarrow \angle BAC={ 180 }^{ o }-\angle BDC={ 180 }^{ o }-{ 85 }^{ o }=95^{ o }.$$

    $$ \therefore \angle DAB=\angle BAC-\angle CAD=95^{ o }-25^{ o }=70^{ o }.$$

    So, (i) $$\angle CBD=25^{ o }$$, (ii) $$\angle DAB=70^{ o }$$, (iii) $$ \angle ADB=35^{ o }$$.

    Hence, Option $$C$$ is correct.
  • Question 3
    1 / -0
    Two circle intersect at $$A$$ and $$B$$. Quadrilaterals $$PCBA$$ and $$ABDE$$ are inscribed in these circles such that $$PAE$$ and $$CBD$$ are line segments. Also, $$\angle$$P = 95$$^o$$ and $$\angle$$C = 40$$^o$$. The value of $$Z$$ is:

    Solution
    Given, $$AB$$ is the common chord of two intersecting circles.
    $$ABCP$$ & $$ABDE$$ are two cyclic quadrilaterals inscribed in the circles in such a way that $$ \overline { PAE  } $$ & $$ \overline { CBD }$$ are line segments,
    i.e. $$\overline { PAE}$$ as well as $$\overline { CBD } $$ are straight lines.
    Also, $$ \angle APC={ 95 }^{ o }$$ & $$\angle BCP={ 40 }^{ o }.$$

    Then, $$\angle APC+\angle ABC=180^{ o }$$.......(i) [since the sum of the opposite angles of a cyclic quadrilateral is $${ 180 }^{ o }$$]
    and $$\angle ABC+\angle AED=180^{ o }$$.......(ii) (linear  pairs).

    So, from (i) & (ii), we get,
    $$\angle APC=\angle ABD={ 95 }^{ o }.

    Again $$\angle ABD+\angle AED(=Z)=180^{ o }$$...[since the sum of the opposite angles of a cyclic quadrilateral is $${ 180 }^{ o }$$
    $$\therefore  Z=180^{ o }-\angle ABD=180^{ o }-95^{ o }=85^{ o }.$$

    Hence, option $$D$$ is correct.
  • Question 4
    1 / -0
    In the given figure, $$PQRS$$ is a cyclic trapezium in which $$PQ\parallel SR$$. If $$\angle$$P = 82$$^o$$, then $$\angle$$S is:

    Solution
    Given, $$ PQRS$$ is a cyclic trapezium with $$PQ\parallel SR, \angle QPS={ 82 }^{ o }.$$

    Now, $$\angle QPS+\angle RSP={ 180 }^{ o }$$ ...[ Since the sum of co-interior anglesis $$={ 180 }^{ o }$$].

    $$ \therefore \angle RSP={ 180 }^{ o }-\angle QPS={ 180 }^{ o }-{ 82 }^{ o }={ 98 }^{ o }.$$

    Hence, option $$A$$ is correct.
  • Question 5
    1 / -0
    In the figure, $$AB$$ is parallel to $$DC$$, $$\angle BCD=80^o$$ and $$\angle BAC = 25^o$$. Then $$\angle CAD$$ is:

    Solution

    Given, $$ABCD$$ is a cyclic quadrilateral. $$AC$$ is its diagonal. $$\angle BAD={ 25 }^{ o }, \angle BCD={ 80 }^{ o }$$.

    Here, $$ABCD$$ is a cyclic quadrilateral. 

    $$\therefore  \angle BCD+\angle BAD=1{ 80 }^{ o }$$ (since the sum of the opposite  angles of a cyclic quadrilateral is $${ 180 }^{ o }$$)

    $$\Rightarrow \angle BAD=1{ 80 }^{ o }-\angle BCD=1{ 80 }^{ o }-{ 80 }^{ o }=1{ 00 }^{ o }$$. 

    But $$ \angle BAD=\angle BAC+\angle CAD$$

    $$\therefore  \angle BAC+\angle CAD=1{ 00 }^{ o } \Rightarrow \angle CAD=1{ 00 }^{ o }-\angle BAC=1{ 00 }^{ o }-25^{ o }=75^{ o }$$.

    Hence, option $$C$$ is correct.

  • Question 6
    1 / -0
    In the given figure, $$I$$ is the incentre of $$\Delta ABC$$. $$AI$$ produced meets the circumcircle of $$\Delta ABC$$ at $$D$$; $$\angle ABC = 55^{o}$$ and $$\angle ACB = 65^{o}$$.  Then  (i) $$\angle BCD$$ (ii) $$\angle CBD$$ (iii) $$\angle DCI$$ (iv) $$\angle BIC$$ are respectively:

    Solution
    $$ \\ Given-\\ The\quad \Delta ABC,\quad whose\quad incentre\quad is\quad I,\quad has\quad been\quad inscribed\quad in\quad a\quad cicle.\\ AI\quad is\quad produced\quad to\quad meet\quad the\quad circumference\quad at\quad D.\\ BD\quad \& \quad DC\quad have\quad been\quad joined.\\ \angle ABC={ 55 }^{ o }\quad \& \quad \angle ACB={ 65 }^{ o }.\\ To\quad find\quad out-\\ (i)\quad \angle BCD=?\quad \quad (ii)\quad \angle CBD=?\quad \quad (iii)\quad \angle DCI=?\quad \quad (iv)\quad \angle BIC=?\\ Solution-\\ \angle ABC=\angle ADC={ 55 }^{ o }\quad [since\quad both\quad the\quad angles\quad have\quad been\quad subtended\quad \\ by\quad the\quad chord\quad AC\quad to\quad the\quad circumference\quad at\quad B\quad \& \quad D].\\ Also, \quad  \angle ACB=\angle ADB={ 65 }^{ o }\quad [since\quad both\quad the\quad angles\quad have\quad been\quad subtended\quad \\ by\quad the\quad chord\quad AB\quad to\quad the\quad circumference\quad at\quad C\quad \& \quad D].\\ So,\quad \angle BDC=\angle ADC+\angle ADB={ 55 }^{ o }+{ 65 }^{ o }=120^{ o }.\\ Now,\quad reflex\angle BIC=2\angle BDC\quad (since\quad reflex\angle BIC\quad \& \quad \angle BDC\quad are\quad angles\quad \\ at\quad the\quad centre\quad \& \quad angle\quad at\quad the\quad circumference\quad at\quad D\quad subtended\quad by\\ the\quad chord\quad BC).\\ \therefore \quad reflex\angle BIC=2\times 120^{ o }=240^{ o }\Longrightarrow \angle BIC=360^{ o }-240^{ o }=120^{ o }.\\ By\quad the\quad same\quad reasoning\quad \angle BAC=\quad \frac { 1 }{ 2 } \times \angle BIC=\frac { 1 }{ 2 } \times 120^{ o }=60^{ o }.\\ Again,\quad I\quad is\quad the\quad incentre\quad of\quad \Delta ABC.\\ \therefore \quad AI,\quad BI\quad \& \quad CI\quad are\quad angular\quad bisector\quad of\quad \\ \angle BAC,\quad \angle ABC\quad \& \quad \angle ACB\quad respectively.\\ \therefore \quad \angle BAI=\frac { 1 }{ 2 } \times \angle BAC=\frac { 1 }{ 2 } \times 60^{ o }=30^{ o }=\angle CAI.\\ So,\quad \angle BCD=\angle BAI=30^{ o }\quad [since\quad \angle BCD\quad \& \quad \angle BAI\quad are\quad angles\quad \\ at\quad the\quad centre\quad \& \quad angle\quad at\quad the\quad circumference\quad at\quad A\quad subtended\quad by\\ the\quad chord\quad BD].\\ By\quad the\quad same\quad reasoning\quad \angle CBD=\angle CAI=30^{ o }.\\ Again,\quad CI\quad is\quad the\quad angular\quad bisector\quad of\quad \angle ACD.\\ \therefore \quad \angle BCI=\angle ACI=\frac {1 }{ 2 } \times 65^{ o }=32.5^{ o }.\\ \therefore \quad \angle DCI=\angle BCD+\angle BCI=32.5^{ o }+30^{ o }=62.5^{ o }.\\ So\quad \angle BCD,\quad \angle CBD,\quad \angle DCI\quad \& \quad \angle BIC\quad are \quad { 30 }^{ o },\quad { 30 }^{ o },\quad { 62.5 }^{ o }\quad \& \quad { 120 }^{ o }\quad respectively.\\ Hence,\quad option\quad B \quad is \quad correct. $$

  • Question 7
    1 / -0
    In the given figure, $$AB$$ is a diameter of a circle with the centre $$O$$ and chord $$ED$$ is parallel to $$AB$$ and $$\angle EAB = 65^{o}$$.  (i) $$\angle EBA$$ (ii) $$\angle BED$$ (iii) $$\angle BCD$$ are respectively:

    Solution

    Since $$AB$$ is diameter,

    $$\angle AEB = 90^\circ$$ ...[Angle formed in a semi circle].


    In $$\triangle AEB$$

    $$\angle ABE = 180 - \angle EAB - \angle AEB$$ ...[Angle sum property]

    $$\angle ABE = 180 – 65 -90 = 25^\circ$$.


    Given, $$ED \parallel AB$$.

    $$\implies \angle DEB = \angle EBA = 25^\circ$$ ...[Alternate interior angles].


    Since $$EDCB$$ is a cyclic quadrilateral opposite angles are supplementary

    Then, $$\angle DEB + \angle DCB  = 180^\circ $$

    $$\implies \angle DCB = 180 – 25 = 155^\circ $$.


    Hence, option $$D$$ is correct.

  • Question 8
    1 / -0
    In the adjoining figure, two circles intersect at $$A$$ and $$B$$. The centre of the smaller circle is $$O$$ and lies on the circumference of the larger circle. If $$PAC$$ and $$PBD$$ are straight lines and $$\angle APB = 75^{o}$$, find (i) $$\angle AOB$$, (ii) $$\angle ACB$$, (ii) $$\angle ADB$$. 

    Solution
    Given that $$O$$ is the center of the smaller circle and $$\angle APB=75^{\circ}$$.

    We know, the angle subtended by an arc at the center of the circle has doubled the angle subtended at any point of the circle.

    So, $$\angle AOB=2\angle APB$$

    $$\implies$$ $$\angle AOB =2\times75^{\circ}=150^{\circ}$$.

    Now, since $$ ACOB$$ is a cyclic quadrilateral,

    $$\angle ACB+\angle AOB=180^{\circ}$$ ...[Opposite angles of a cyclic quadrilateral are supplementary]

    $$\Rightarrow \angle ACB+150^{\circ}=180^{\circ}$$

    $$\Rightarrow \angle ACB=180^{\circ}-150^{\circ}$$

    $$\Rightarrow \angle ACB=30^{\circ}$$

    Also, since AOBD is a cyclic quadrilateral,

    $$ \angle ADB+\angle AOB=180^{\circ}$$  ...[Opposite angles of cyclic quadrilateral are supplementary]

    $$\Rightarrow \angle ADB+150^{\circ}=180^{\circ}$$

    $$\Rightarrow \angle ADB=180^{\circ}-150^{\circ}$$

    $$\Rightarrow \angle ADB=30^{\circ}$$.

    Hence, $$\angle AOB=150^{\circ}$$, $$\angle ACB=30^{\circ}$$ and $$\angle ADB=30^{\circ}$$.

    Therefore, option $$A$$ is correct.
  • Question 9
    1 / -0
    Two circles intersect in $$A$$ and $$B$$. Quadrilaterals $$PCBA$$ and $$ABDE$$ are inscribed in these circles such that $$PAE$$ and $$CBD$$ are line segments. If $$\angle P=95^o$$ and $$\angle C=40^o$$. Also, $$ \angle AED=z. $$ Then the value of $$z$$ is:

    Solution
    $$ Given-\\ Two\quad circles\quad intersect\quad at\quad A\quad \& \quad B.\\ The\quad quadrilateral\quad PCBA\quad is\quad inscribed\quad in\quad one\quad circle\quad and\\ the\quad quadrilateral\quad EDBA\quad is\quad inscribed\quad in\quad another\quad circle\\ such\quad that\quad the\quad points\quad P,\quad A\quad \& \quad B\quad are\quad collinear\quad and\\ C,\quad B\quad \& \quad D\quad are\quad collinear.\\ \angle AED=z,\quad \angle APC=95^{ o }\quad \& \quad \angle PCB=40^{ o }.\\ To\quad find\quad out-\\ z=?\\ solution-\\ \angle APC+\angle ABC={ 180 }^{ o }\quad (since\quad the\quad sum\quad of\quad the\quad opposite\quad angles\quad \\ of\quad a\quad cyclic\quad quadrilateral\quad is\quad { 180 }^{ o }).\\ \Longrightarrow \angle ABC={ 180 }^{ o }-\angle APC={ 180 }^{ o }-95^{ o }=85^{ o }.\\ Again\quad \angle ABC+\angle ABD={ 180 }^{ o }(linear\quad pair).\\ \therefore \quad \angle ABD={ 180 }^{ o }-\angle ABC={ 180 }^{ o }-85^{ o }=95^{ o }.\\ Now\quad \angle ABD+\angle AED={ 180 }^{ o }\quad (since\quad the\quad sum\quad of\quad the\quad opposite\quad angles\quad \\ of\quad a\quad cyclic\quad quadrilateral\quad is\quad { 180 }^{ o }).\\ \therefore \quad \angle AED=z={ 180 }^{ o }-\angle ABD={ 180 }^{ o }-95^{ o }=85^{ o }.\\ Hence, \quad option\quad D \quad is \quad correct.$$
  • Question 10
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral whose diagonals intersect at a point $$E$$. If $$\angle DBC = 70^o, \angle BAC = 30^o$$, find $$\angle BCD$$. Further, if AB= BC, find $$\angle ECD$$.
    Solution
    $$ Given-\\ ABCD\quad is\quad a\quad cyclic\quad quadrilateral.\\ Its\quad diagonals\quad AB\quad \& \quad CD\quad intersect\quad at\quad E.\\ \angle DBC={ 70 }^{ o },\quad \angle BAC={ 30 }^{ o }.\\ To\quad find\quad out-\\ \angle BCD=?\\ Also,\quad if\quad AB=BC\quad then\quad \angle ECD=?\\ Solution-\\ BC\quad subtends\quad \angle BDC\quad \& \quad \angle BAC\quad to\quad the\quad circumference\quad \\ of\quad the\quad given\quad circle\quad at\quad D\quad \& \quad A\quad respectively.\\ \therefore \quad \angle BDC=\angle BAC={ 30 }^{ o }\quad [since\quad the\quad angles,\quad subtended\quad by\quad \\ a\quad chord\quad of\quad a\quad circle\quad to\quad different\quad points\quad of\quad the\quad circumferece\quad \\ of\quad the\quad same\quad circle,\quad are\quad equal].\\ \therefore \quad \angle BCD=180^{ o }-(\angle DBC+\angle BDC)\quad \left( angle\quad sum\quad property\quad of\quad triangles \right) \\ \Longrightarrow \angle BCD=180^{ o }-({ 70 }^{ o }+{ 30 }^{ o })={ 80 }^{ o }.\\ Again,\quad in\quad \Delta ABC\quad we\quad have\quad AB=BC.\\ i.e\quad \Delta ABC\quad is\quad isosceles\quad with\quad AC\quad as\quad base.\\ \therefore \quad \angle BAC=\angle BCA={ 30 }^{ o }.\\ So\quad \angle ECD=\angle BCD-\angle BCA=\quad { 80 }^{ o }-{ 30 }^{ o }={ 50 }^{ o }.\\ \therefore \quad \angle BCD\quad \& \quad \angle ECD\quad are\quad respectively \quad { 80 }^{ o }\quad \& \quad { 50 }^{ o }.\\ Hence,\quad option\quad C \quad is \quad correct.  $$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now