Self Studies

Circles Test - 24

Result Self Studies

Circles Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, $$AB$$ is a diameter of a circle with centre $$O$$. If $$ADE$$ and $$CBE$$ are straight lines, meeting a $$E$$ such that $$\angle BAD = 35^{o}$$ and $$\angle BED = 25^{o}$$,  Then : (i) $$\angle DCB$$ (ii) $$\angle DBC$$ (iii) $$\angle BDC$$, are respectively.

    Solution
    $$ Given-\\ O\quad is\quad the\quad centre\quad of\quad a\quad circle\quad with\quad diameter\quad AB.\\ AD\quad \& \quad BC\quad are\quad chords\quad which\quad have\quad been\quad extended\quad  to\quad intersect\quad at\quad E.\\ AB\quad \& \quad CD\quad are\quad joined.\\ \angle BAD={ 35 }^{ o }\quad \& \quad \angle BED={ 25 }^{ o }.\\ \\ To\quad find\quad out-\\ \angle DCB,\quad \angle DBC\quad \& \quad \angle BDC\\ \\ Solution-\\ \angle BAD=\angle DCB={ 35 }^{ o }......(i)\quad [since\quad both\quad of\quad them\quad have\quad been\quad \\ subtended\quad by\quad the\quad chord\quad BD\quad to\quad the\quad circumference\quad at\quad A\quad \& \quad C].\\ Now\quad \angle ACB={ 90 }^{ o }\quad since\quad \angle ACB\quad is\quad angle\quad in\quad a\quad semicircle,\quad AB\\ being\quad the\quad diameter.\\ \therefore \quad \angle ACD=\angle ACB-\angle DCB={ 90 }^{ o }-{ 35 }^{ o }={ 55 }^{ o }.\\ Again\quad \angle ABD=\angle ACD={ 55 }^{ o }\quad [since\quad both\quad of\quad them\quad have\quad been\quad \\ subtended\quad by\quad the\quad chord\quad AD\quad to\quad the\quad circumference\quad at\quad B\quad \& \quad C].\\ Now\quad in\quad \Delta ACE,\quad we\quad have\quad \angle CAD={ 180 }^{ o }-(\angle ACB+\angle BEA)={ 180 }^{ o }-({ 90 }^{ o }+{ 25 }^{ o })=65^{ o }.\\ \therefore \quad \angle BAC=\angle CAD-\angle BAD=65^{ o }-35^{ o }=30^{ o }.\\ \therefore \quad \angle BDC=\angle BAC=30^{ o }.......(ii)\quad [since \quad both\quad of\quad them\quad have\quad been\quad \\ subtended\quad by\quad the\quad chord\quad BC\quad to\quad the\quad circumference\quad at\quad A\quad \& \quad D].\\ Again\quad ACBD\quad is\quad a\quad cyclic\quad quadrilateral.\quad \\ \therefore \quad \angle CAD+\angle DBC={ 180 }^{ o }\quad (The\quad sum\quad of\quad the\quad opposite\quad angles\quad of\quad a\quad cyclic\quad \\ quadrilateral\quad is\quad { 180 }^{ o }).\\ So\quad \angle DBC={ 180 }^{ o }-\angle CAD={ 180 }^{ o }-65^{ o }=115^{ o }.......(iii).\\ \therefore \quad \quad \angle DCB,\quad \angle DBC\quad \& \quad \angle BDC\quad are \quad 35^{ o },\quad 115^{ o }\quad \& \quad 30^{ o }\quad respectively.\\ Hence, \quad option\quad C \quad is \quad correct. $$
  • Question 2
    1 / -0
    In the given figure, O is the centre of the circle. If $$\angle AOD = 140^{o}$$ and $$\angle CAB = 50^{o}$$,  then:
    (i) $$\angle EDB$$ (ii) $$\angle EBD$$ are respectively:

    Solution
    Given, $$O$$ is the centre of a circle in which a quadrilateral $$ ABCD$$ has been inscribed.
    Also, $$ AB$$ & $$CD$$ are produced to meet at $$E$$.
    Now, $$\angle BAC={ 140 }^{ o }$$ & $$\angle AOD=50^{ o }$$.

    $$\angle BOD={ 180 }^{ o }-\angle AOD$$...(linear pair)
    $$\Longrightarrow \angle BOD={ 180 }^{ o }-{ 140 }^{ o }={ 40 }^{ o }$$.........(i).

    Since, $$OD$$ and $$OB$$ are the radii of the same circle, $$OD=OB$$.
    i.e $$\Delta BOD$$ is an isosceles one with $$BD$$ as base.

    $$ \therefore\angle OBD=\angle ODB$$
    $$\Longrightarrow \angle OBD+\angle ODB=2\angle OBD$$ $$= 2\angle ODB$$.

    Then, $$\angle OBD+\angle ODB+\angle BOD={ 180 }^{ o }$$ ...(angle sum property of triangles).

    Using (i), we get,
    $$(2\angle OBD= 2\angle ODB)={ 180 }^{ o }-{ 40 }^{ o }={ 140 }^{ o }$$
    $$\Longrightarrow (\angle OBD= \angle ODB)={ 70 }^{ o }.$$

    Again $$\angle EBD={ 180 }^{ o }-\angle OBD$$ ...(linear pair)
    $$={ 180 }^{ o }-{ 70 }^{ o }={ 110 }^{ o }$$..........(iii).

    Again $$ \angle BAC+\angle BDC={ 180 }^{ o }$$ ...(sum of the opposite angles of a cyclic quadrilateral $$={ 180 }^{ o }$$).
    $$\Longrightarrow \angle BDC={ 180 }^{ o }-\angle BAC={ 180 }^{ o }-{ 50 }^{ o }={ 130 }^{ o }$$.

    So $$ \angle ODC=\angle BDC-\angle ODB={ 130 }^{ o }-{ 70 }^{ o }={ 60 }^{ o }.$$

    Now we have $$\angle ODC+\angle ODB+\angle EDB={ 180 }^{ o }$$....(straight  angle)
    $$\therefore   \angle EDB={ 180 }^{ o }-(\angle ODC+\angle ODB)={ 180 }^{ o }-({ 60 }^{ o }+{ 70 }^{ o })={ 50 }^{ o }$$.....(iv).

    So $$\angle EDB$$  & $$ \angle EBD$$ are respectively $${ 50 }^{ o }$$ and $$ { 110 }^{ o }.$$

    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    $$A, B$$, and $$C$$ are three points on a circle with centre $$O$$ such that $$BOC = 30^o$$ and $$\angle AOB = 60^o$$. If $$D$$ is a point on the circle other than the arc $$ABC$$, find $$\angle ADC$$. 

    Solution
    $$\angle{AOC}=\angle{AOB}+\angle{BOC}$$ $$=60^{\circ}+30^{\circ}=90^°$$
    Arc ABC subtends $$\angle{AOC}$$ at centre of a circle and $$\angle{ADC}$$ on point D
    Therefore
    $$\angle{AOC}=2\angle{ADC}$$     (Angle subtended by arc at the centre is double the angle subtended by it at any point on circumference. )
    $$90^{\circ}$$=$$ 2 \angle{ADC}$$
    $$\angle{ADC}$$=$$45^{\circ}$$
    Therefore option  A will be the answer.
  • Question 4
    1 / -0
    In the given figure, the two circles intersect at $$P$$ and $$Q$$. If $$\angle A = 80^{o}$$ and $$\angle D = 84^{o}$$, So (i) $$\angle QBC$$, (ii) $$\angle BCP$$ are:

    Solution
    $$ Given-\\ Two\quad circles\quad intersect\quad at\quad P\quad \& \quad Q.\\ The\quad lines\quad APB\quad \& \quad \quad DQC\quad intersect\quad the\quad circles\quad at\\ A,\quad P,\quad B\quad and\quad D,\quad Q,\quad C\quad respectively.\\ AD\quad \& \quad BC\quad have\quad been\quad joined.\\ \angle ADQ={ 80 }^{ o }\quad and\quad \angle DAP={ 84 }^{ o }.\\ To\quad find\quad out-\\ \angle QBC=?\\ \angle BCP=?\\ Solution-\\ We\quad join\quad PQ.\\ ADPQ\quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle PQA={ 180 }^{ o }-\angle ADP={ 180 }^{ o }-{ 84 }^{ o }=96^{ o }\quad [since \quad \\ the\quad sum\quad of\quad the\quad opposite\quad angles\quad of\quad a\quad cyclic\quad \\ quadrilateral={ 180 }^{ o }].\\ Also\quad \angle PQB={ 180 }^{ o }-\angle PQA={ 180 }^{ o }-{ 96 }^{ o }={ 84 }^{ o }(linear\quad pair).\\ Again\quad QBCP \quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle BCP={ 180 }^{ o }-\angle BQP={ 180 }^{ o }-{ 84 }^{ o }=96^{ o }.....(i)\quad [since\\ the\quad sum\quad of\quad the\quad opposite\quad angles\quad of\quad a\quad cyclic\quad \\ quadrilateral={ 180 }^{ o }].\\ Similarly, \quad ADPQ\quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle QPD={ 180 }^{ o }-\angle QAD={ 180 }^{ o }-{ 80 }^{ o }=100^{ o }\quad [since\\ the\quad sum\quad of\quad the\quad opposite\quad angles\quad of\quad a\quad cyclic\quad \\ quadrilateral={ 180 }^{ o }].\\ Also,\quad \angle QPC={ 180 }^{ o }-\angle QPD={ 180 }^{ o }-{ 100 }^{ o }={ 80 }^{ o }(linear\quad pair).\\ Again\quad QBCP\quad \quad is\quad a\quad cyclic\quad quadrilateral.\\ \therefore \quad \angle QBC={ 180 }^{ o }-\angle QPC={ 180 }^{ o }-{ 80 }^{ o }=100^{ o }......(ii)\quad [since\\ the\quad sum\quad of\quad the\quad opposite\quad angles\quad of\quad a\quad cyclic\quad \\ quadrilateral={ 180 }^{ o }].\\ \therefore \quad \quad \angle QBC=100^{ o }\\ and\quad \angle BCP=96^{ o }.\\ Hence, \quad option\quad A \quad is \quad correct.\\ \\ \\  $$

  • Question 5
    1 / -0
    $$AOD$$ is a diameter of the circle with centre $$O.$$ Given that $$\angle BDA=18^{\circ}$$ and $$\angle BDC=38^{\circ}. $$ Find $$\angle BCD$$.

    Solution
    Given, $$AD$$ is a diameter.
    So, $$\angle ABD = 90^{\circ}$$ (Angle in a semi circle)

    Now, opposite angles of a cyclic quadrilateral are supplementary.
    So,
    $$\angle ABC + \angle ADC= 180^{\circ}$$ 
    $$\Rightarrow ( \angle ABD + \angle DBC) + ( \angle ADB +  \angle BDC) = 180^{\circ}$$
    $$\Rightarrow (90^{\circ} + \angle DBC) + (18^{\circ} + 38^{\circ}) = 180^{\circ}$$
    $$\Rightarrow 90^{\circ} + \angle DBC + 56^{\circ}  = 180^{\circ}$$
    $$\Rightarrow \angle DBC+146^{\circ} = 180^{\circ}$$
    $$\Rightarrow \angle DBC= 34^{\circ}$$

    Now, applying angle sum property In $$\triangle DBC$$
    $$\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$$
    $$\Rightarrow 34^{\circ} + \angle BCD + 38^{\circ} = 180^{\circ}$$
    $$\Rightarrow \angle BCD + 72^{\circ} = 180^{\circ}$$
    $$\Rightarrow \angle BCD = 108^{\circ}$$

    Hence, the measure of $$\angle BCD $$ is $$108^{\circ}$$

  • Question 6
    1 / -0
    In the given figure $$AB$$ is diameter of circle with centre $$O$$ and chord $$ED$$ is parallel to $$AB$$ and $$\angle EAB=65^o$$. Then $$m\angle EBD$$ is:

    Solution

    Since $$AB$$ is diameter, $$\angle AEB = 90^\circ$$.

    In $$\triangle AEB$$,

    $$\angle ABE + \angle EAB +\angle AEB=180^o$$ ...[Angle sum property]

    $$\implies$$ $$\angle ABE = 180^o - \angle EAB - \angle AEB$$

    $$\implies$$ $$\angle ABE = 180^o – 65^o -90^o = 25^\circ$$.


    Given, $$ED \parallel AB$$,

    $$\implies$$ $$ \angle DEB = \angle EBA = 25^\circ$$ ....[Alternate interior angles].


    Since $$EDCB$$ is a cyclic quadrilateral,

    $$\angle EAB + \angle EDB  = 180^\circ$$ ...[Opposite angles of cyclic quadrilateral are supplementary]

    $$\implies$$ $$\angle EDB = 180^o – 65^o = 115^\circ $$.


    In $$\triangle EDB$$,

    $$\angle EBD + \angle DEB+ \angle BDE=180^o$$

    $$\implies$$ $$\angle EBD = 180 - \angle DEB - \angle BDE$$

    $$\implies$$ $$\angle ABE = 180 – 25 -115 = 40^\circ$$.


    Hence, option $$D$$ is correct.

  • Question 7
    1 / -0
    Which of the following statement is false?
    Solution

    $$\textbf{Step - 1: Verify, If we join any points on a circle we get a diameter of the circle}$$

                       $$\text{A Chord is a line segment that joins any two points of the circle.}$$

                       $$\text{The endpoints of this line segments lie on the circumference of the circle.}$$

                       $$\therefore \text{Option (A) is false}$$

    $$\textbf{Step - 2: Verify, A diameter of a circle contains the center of the circle}$$

                       $$\text{Any interval joining two points on the circle and passing through the center is called a}$$

                       $$\text{diameter of the circle.}$$

                       $$\therefore \text{Option (B) is True}$$

    $$\textbf{Step - 3: Verify, A semicircle is an arc}$$

                       $$\text{The arc of a circle consists of two points on the circle and all of the points on the circle that lie}$$

                       $$\text{between those two points.}$$

                       $$\text{It's like a segment that was wrapped partway around a circle.}$$

                       $$\text{An arc whose measure equals 180 degrees is called a semicircle since it divides the circle in two}$$

                       $$\therefore \text{Option (C) is True}$$

    $$\textbf{Step - 4: Verify, the length of a circle is called its circumference}$$

                       $$\text{A Circle is a round closed figure where all its boundary points are equidistant from a fixed point}$$

                       $$\text{called the center.}$$ 

                       $$\text{The two important metrics of a circle is the area of a circle and the circumference of a circle.}$$

                       $$\therefore \text{Option (D) is True}$$

    $$\textbf{Hence, option A is correct as it is false}$$        

  • Question 8
    1 / -0
    $$PQRS$$ is a cyclic quadrilateral. Find the measure of $$\angle P$$ and $$\angle Q$$.

    Solution
    Here, $$PQRS$$ is a cyclic quadrilateral.

    We know, opposite angles of a cyclic quadrailateral are supplementary.
    $$\therefore 3x+x=180^{\circ}$$ and $$2y+y=180^{\circ}$$
    $$\Rightarrow 4x=180^{\circ}$$ and $$3y=180^{\circ}$$
    $$\Rightarrow x=45^{\circ}$$ and $$y=60^{\circ}$$.

    $$\therefore \angle P=3x=3\times 45^{\circ}=135^{\circ}$$ and $$\angle Q=y=60^{\circ}$$.

    Hence, option $$A$$ is correct.
  • Question 9
    1 / -0
    The perpendicular drawn from centre to the chord divides the chord in a ratio of _____
    Solution
    The perpendicular drawn from the center of the circle to the chord bisects the chord. So, it divides the chord in $$1:1$$ 
    Option A is correct.
  • Question 10
    1 / -0
    $$\text{ABCD}$$ is a cyclic quadrilateral whose side $$\text{AB}$$ is a diameter of the circle through $$\text{A, B, C}$$ and $$\text{D}$$. If $$\angle \text{ADC}=130^{\circ}$$, find $$\angle \text{BAC}$$.

    Solution
    Construction: Join A and C. This forms a right triangle ACB   [ angle in a semicircle is $$90^{\circ}$$]
    From the figure, we can say that $$\angle \text{B}=50^{\circ}$$  [opposite angles in a cyclic quadrilateral are supplementary]

    Consider triangle ACB.
    $$\angle \text{ACB}=90^{\circ}$$   [ angle in a semicircle is $$90^{\circ}$$]
    $$\angle \text{ABC}=50^{\circ}$$ 
    $$\implies \angle \text{BAC}=40^{\circ}$$  [angle sum property of a triangle].

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now