Given, $$O$$ is the centre of a circle in which a quadrilateral $$ ABCD$$ has been inscribed.
Also, $$ AB$$ & $$CD$$ are produced to meet at $$E$$.
Now, $$\angle BAC={ 140 }^{ o }$$ & $$\angle AOD=50^{ o }$$.
$$\angle BOD={ 180 }^{ o }-\angle AOD$$...(linear pair)
$$\Longrightarrow \angle BOD={ 180 }^{ o }-{ 140 }^{ o }={ 40 }^{ o }$$.........(i).
Since, $$OD$$ and $$OB$$ are the radii of the same circle, $$OD=OB$$.
i.e $$\Delta BOD$$ is an isosceles one with $$BD$$ as base.
$$ \therefore\angle OBD=\angle ODB$$
$$\Longrightarrow \angle OBD+\angle ODB=2\angle OBD$$ $$= 2\angle ODB$$.
Then, $$\angle OBD+\angle ODB+\angle BOD={ 180 }^{ o }$$ ...(angle sum property of triangles).
Using (i), we get,
$$(2\angle OBD= 2\angle ODB)={ 180 }^{ o }-{ 40 }^{ o }={ 140 }^{ o }$$
$$\Longrightarrow (\angle OBD= \angle ODB)={ 70 }^{ o }.$$
Again $$\angle EBD={ 180 }^{ o }-\angle OBD$$ ...(linear pair)
$$={ 180 }^{ o }-{ 70 }^{ o }={ 110 }^{ o }$$..........(iii).
Again $$ \angle BAC+\angle BDC={ 180 }^{ o }$$ ...(sum of the opposite angles of a cyclic quadrilateral $$={ 180 }^{ o }$$).
$$\Longrightarrow \angle BDC={ 180 }^{ o }-\angle BAC={ 180 }^{ o }-{ 50 }^{ o }={ 130 }^{ o }$$.
So $$ \angle ODC=\angle BDC-\angle ODB={ 130 }^{ o }-{ 70 }^{ o }={ 60 }^{ o }.$$
Now we have $$\angle ODC+\angle ODB+\angle EDB={ 180 }^{ o }$$....(straight angle)
$$\therefore \angle EDB={ 180 }^{ o }-(\angle ODC+\angle ODB)={ 180 }^{ o }-({ 60 }^{ o }+{ 70 }^{ o })={ 50 }^{ o }$$.....(iv).
So $$\angle EDB$$ & $$ \angle EBD$$ are respectively $${ 50 }^{ o }$$ and $$ { 110 }^{ o }.$$
Hence, option $$B$$ is correct.