Self Studies

Circles Test - 25

Result Self Studies

Circles Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the figure, $$AB$$ is parallel to $$DC$$, $$\angle BCD=80^o$$ and $$\angle BAC = 25^o$$. Then m$$\angle ADC$$ is:

    Solution
    Given, $$ ABCD$$ is a cyclic quadrilateral and $$ AC$$ is its diagonal.

    Also, $$ \angle BAD={ 25 }^{ o }, \angle BCD={ 80 }^{ o }$$

    Since, $$ ABCD$$ is a cyclic quadrilateral.
    $$ \therefore  \angle BCD+\angle BAD=1{ 80 }^{ o }$$ ....(since the sum of the opposite angles of a cyclic quadrilateral is $${ 180 }^{ o }$$)

    $$ \Rightarrow \angle BAD=1{ 80 }^{ o }-\angle BCD=1{ 80 }^{ o }-{ 80 }^{ o }=1{ 00 }^{ o }$$.

    Again, $$AB\parallel CD$$...[Alternate interior angles]
    $$\Rightarrow \angle BAC=\angle ACD=25^{ o }$$.

    $$ \therefore \angle ACB=\angle BCD-\angle ACD=80^{ o }-25^{ o }=55^{ o }$$.

    Now in $$\Delta ABC$$,
    $$\angle ABC=180^{ o }-(\angle BAC+\angle BCA)$$ ....(angle sum property of triangles)

    $$ \Rightarrow \angle ABC=180^{ o }-(25^{ o }+55^{ o })=100^{ o }$$ 

    Again $$ ABCD$$ is a cyclic quadrilateral.
    $$\therefore \angle ABC+\angle ADC={ 180 }^{ o }$$ ....(since the sum of the opposite angles of a cyclic quadrilateral is $$ { 180 }^{ o }$$)

    $$ \therefore  \angle ADC={ 180 }^{ o }-\angle ABC={ 180 }^{ o }-100^{ o }=80^{ o }$$.

    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    Then m$$\angle EBA$$ is:

    Solution
    Given- $$ABDE$$ is a cyclic quadrilateral in a circle with centre $$O$$ and diameter $$AB$$.
    $$BE$$ is a diagonal ofthe given cyclic quadrilateral.
    $$ \angle EAB={ 65 }^{ o }$$ 

    To find out- $$\angle EBA=?$$ 

    Solution-
    $$ AB$$ is the diameter. 
    Then, $$\angle AEB$$ is an angle in the semicircle.
    $$\therefore  \angle AEB={ 90 }^{ o }$$

    And $$\angle EBA ={ 180 }^{ o }-(\angle AEB+\angle EAB)$$ .....(angle sum property of triangles).
    $$\Rightarrow \angle EBA ={ 180 }^{ o }-({ 90 }^{ o }+{ 65 }^{ o })={ 25 }^{ o }$$.

    Hence, option $$A$$ is correct.

  • Question 3
    1 / -0
    $$ABC$$ is an isosceles triangle in the given circle with centre $$O,$$ if  $$\angle ABC=42^{\circ},$$ then find the measure of $$ \angle CDE.$$

    Solution
    In $$\triangle ABC,$$
    $$AB=AC$$                  [Given]

    We know that angles opposite to equal sides are equal in a triangle. So,
    $$\angle ACB=\angle ABC =42^{\circ}$$

    Now, by using angle sum property,
    $$\begin{aligned}{}\angle ACB + \angle ABC + \angle A& = 180^\circ\\42^\circ + 42^\circ + \angle A& = 180^\circ\\84^\circ + \angle A &= 180^\circ\\\angle A &= 96^\circ\end{aligned}$$

    Quadrilateral $$ABCD$$ is a cyclic quadrilateral so, by using the property that the exterior angle of a cyclic quadrilateral is equal to the opposite interior angle we get,
    $$\angle CDE=\angle A$$
               $$x=96^\circ$$
  • Question 4
    1 / -0
    In the given diagram, $$AB$$ is the diameter of the given circle with centre $$O.$$ $$C$$ and $$D$$ are points on the circumference of the circle. If $$\angle ABD=35^{\circ}$$ and $$\angle CDB=15^{\circ},$$ then $$\angle CBD$$ equals:

    Solution
    Given, $$ABCD$$ is cyclic quadrilateral.

    Now $$\angle ADB = 90^{\circ}$$         ....(Angle in a semi circle).
    Given, $$\angle BDC= 15^{\circ}$$
    Thus, $$\angle D = \angle ADB + \angle BDC$$
    $$\implies$$ $$\angle D = 90^o + 15^o = 105^{\circ}$$.

    Now, $$\angle B + \angle D = 180^o$$           ....(Sum of opposite angles of a cyclic quadrilateral is $$180^o$$)
    $$\implies$$ $$\angle B + 105^o = 180^o$$
    $$\implies$$ $$\angle B = 75^{\circ}$$.

    Then, $$\angle DBC + \angle DBA = 75^o$$
    $$\implies$$ $$\angle DBC + 35^o = 75^o$$
    $$\implies$$ $$\angle DBC = 40^{\circ}$$.

    Hence, option $$C$$ is correct.
  • Question 5
    1 / -0
    Find the value of $$(a + b)$$. 

    Solution
    Here, $$\angle DCF = \angle BCE = 30^{\circ}$$ ...(vertically opposite angles)

    Now, $$\angle ADC = \angle DFC + \angle DCF$$ ...(Exterior angle property)
    $$\implies$$ $$\angle ADC = 30^o + b$$.

    Also, $$\angle ABC = \angle BCE + \angle BEC$$ ...(Exterior angle property)
    $$\implies$$ $$\angle ABC = 30^o + a$$.

    Now, $$\angle ADC + \angle ABC = 180^o$$ (Opposite angles of cyclic quadrilateral)
    $$\implies$$ $$30^o + a + 30^o + b = 180^o$$
    $$\implies$$ $$a + b = 120^{\circ}$$.

    Hence, option $$C$$ is correct.
  • Question 6
    1 / -0
    In figure, AB is a chord of a circle with centre O and AP is the tangent at A such that $$\angle BAP=75^{\circ}$$. Then $$\angle ACB$$ is equal to:

    Solution
    Given,
    AB is a chord of a circle with centre O and AP is the tangent at A and $$\angle BAP=75^{\circ}$$
    $$\therefore \angle OAP=90^{\circ}$$
    $$\therefore \angle OAB=90^{\circ}-75^{\circ}$$
                      $$=15^{\circ}$$
    So, $$\angle AOB=180^{0}-2(15^{0})$$
                        $$=150^{0}$$
    $$\therefore$$ Exterior $$\angle AOB=360^{0}-150^{0}$$
                                     $$=210^{0}$$
    So, $$\angle ACB=\dfrac{1}{2}\times 210^{0}$$
                        $$=105^{0}$$ 
    [Since angle subtended by an arc at the centre is double than the angle subtended by it at the remaining part of the circle]

  • Question 7
    1 / -0
    In the given figure, $$AB = BC = CD$$. If $$\displaystyle \angle BAC=25^{\circ}$$, then value of $$\displaystyle \angle AED$$ is:

    Solution
    In $$\triangle ABC$$, $$AB = AC$$
    Thus, $$\angle BAC = \angle BCA$$ ....(Isosceles triangle property).

    Also, $$\angle BDC = \angle BAC = 25^{\circ}$$ ....(Angles in same segment).

    In $$\triangle BDC$$,
    by angle sum property, the sum of angles $$= 180^o$$
    $$\implies$$ $$\angle CBD + \angle BCA + \angle ACD + \angle BDC = 180$$
    $$\implies$$ $$\angle ACD = 180 - 75 = 105^{\circ}$$.

    Now, in cyclic quadrilateral $$ ACDE$$,
    $$\angle ACD + \angle AED = 180$$ ....(Opposite angles of cyclic quadrilateral)
    $$\implies$$ $$\angle AED = 180 - 105$$
    $$\implies$$ $$\angle AED = 75^{\circ}$$

    Hence, option $$D$$ is correct.
  • Question 8
    1 / -0
    At one end $$A$$ of a diameter $$AB$$ of a circle of radius $$5$$ cm, tangent $$XAY$$ is drawn to the circle. The length of the chord $$CD$$ parallel to $$XY$$ at a distance $$8$$ cm from $$A$$ is:
    Solution
    We have , $$AN=8$$ cm
    So, $$ON=AN-OM$$
    $$\Rightarrow ON=8-5$$
    $$\Rightarrow ON=3$$ cm
    Since $$ON$$ is perpendicular to the chord $$CD$$,
    So, In $$\triangle OCM$$ 
    By Pythagoras theorem, we get
    $$CN=\sqrt {(OC)^2-(OM)^2}$$
    $$\Rightarrow CN=\sqrt {(5)^2-(3)^2}$$
    $$\Rightarrow CN=\sqrt{(25-9)}$$
    $$\Rightarrow CN=\sqrt{16}$$
    $$\Rightarrow CN=4$$
    Hence, $$CD=2 \times CN$$
    $$=2\times 4$$
    $$=8$$ cm

  • Question 9
    1 / -0
    If two chords of a circle are equidistant from the center of the circle then they are 
    Solution

    Let $$AB, PQ$$ be two chords, $$OC$$ and $$OR$$ be their distance from center.

    Given

    $$OC = OR$$

    We know that $$BC = AC $$ and $$PR = SR$$ because perpendicular line from center bisects the chord.

    In $$\triangle OBC$$

    $$BC^2 = r^2 – OC^2 \qquad –(1)$$

    In $$\triangle OPR$$

    $$OP^2 = RP^2 + OR^2$$

    $$PR^2 = r^2 – OC^2 \qquad –(2)$$

    $$(1) = (2)$$

    $$\implies BC = PR \implies 2BC = 2PR$$

    $$AB = PQ$$

  • Question 10
    1 / -0
    In the given figure, the value of $$a$$ is:

    Solution
    $$ABCD$$ is a cyclic quadrilateral. 
    Thus, $$\angle D + \angle B = 180^o$$ ...[Opposite angles of cyclic quadrilateral are supplementary]
    $$\implies$$ $$130 + \angle B = 180$$
    $$\implies$$ $$\angle B = 50^{\circ}$$.

    And, $$AB$$ is a diameter, hence, $$\angle ACB = 90^o$$ (Angle in a semi circle)
    Thus, In $$\triangle ABC$$,
    $$\angle ABC + \angle ACB + \angle CAB = 180^o$$ ...[Angle sum property]
    $$\implies$$ $$50^o + 90^o + \angle CAB = 180^o$$
    $$\implies$$ $$\angle CAB = 40^{\circ}$$.

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now