Self Studies

Circles Test - 26

Result Self Studies

Circles Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the figure, $$\angle BDC=$$

    Solution
    $$\quad In\angle BOC\quad is\quad a\quad central\quad angle\quad =150(Given)\\ \angle BAC=\frac { 1 }{ 2 } \angle BOC[\because Angle\quad at\quad centre\quad is\quad double\quad the\quad angle\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad on\quad remaining\quad part\quad of\quad circle]\\ \Rightarrow \angle BAC=75...(1)\\ In\quad a\quad cyclic\quad quadilateral\quad ACDB\\ \angle BAC+\angle BDC=180\\ \Rightarrow \angle BDC=180-\angle BAC\\ \Rightarrow \angle BDC=180-75.....(From\quad 1)\\ \Rightarrow \angle BDC=105$$
  • Question 2
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral $$AE$$ is drawn parallel to $$CD$$ and $$BA$$ is produced. If $$\displaystyle \angle ABC=92^{\circ}$$ and $$\displaystyle \angle FAE=20^{\circ},$$ then $$\displaystyle \angle BCD=$$ 

    Solution
    We know that exterior angle of a cyclic quadrilateral is equal to the interior opposite angle
    Also, in a  cyclic quadrilateral $$ABCD,$$ sum of opposite angles is $$180^{\circ}$$

    $$\angle ADC+ \angle ABC= 180^{\circ}$$

    $$\angle ADC+92^{\circ}$$ = $$180^{\circ}$$

    $$\angle ADC =88^{\circ}$$

    $$\angle EAD=\angle ADC = 88^{\circ}$$ (Alternate interior angles of parallel lines $$CD$$ and $$AE$$)

    $$\angle FAD=20^{\circ}$$+$$88^{\circ}=108^{\circ}$$

    $$\angle BCD= \angle FAD =108^{\circ}$$ (Exterior angle of a cyclic quadrilateral)
  • Question 3
    1 / -0
    In the given figure, if $$O$$ is centre, then external $$\angle AOC=$$

    Solution
    $$In\quad the\quad given\quad figure\\ \angle ADC+\angle CDE=180^° (Linear\quad pair\quad of\quad angles)\\ \angle CDE=80^° (Given)\\ \angle ADC=180^°-\angle CDE\\ \quad \quad \quad \quad \quad =180^°-80^°=100^°\\ Also,\angle AOC=2\angle ADC\\ [\because Angle\quad at\quad centre\quad is\quad double\quad the\quad angle\quad on\quad remaining\quad part\quad of\quad circle]\\ Hence\angle AOC=2\times 100^°=200^°\\ Hence\quad option(C)\quad is\quad right\quad answer$$
  • Question 4
    1 / -0
    In the given figure, $$\angle DBC=22^{\circ}\;and\;\angle DCB=78^{\circ}$$ then $$\angle BAC$$ is equal to:

    Solution
    Let $$ \angle BAC = x $$
    $$ \therefore \angle BDC = x $$ (angle subtended by chord on same segment are equal)
    In $$ \Delta BDC $$,
    $$ x+22^{\circ}+78^{\circ} = 180^{\circ} $$
    $$ x+100 = 180^{\circ} $$
    $$ \boxed {x = 80^{\circ}}  = \angle BAC$$ 
    Ans (B) 
  • Question 5
    1 / -0
    In the given figure, $$CDEF$$ is a cyclic quadrilateral, $$DE\;$$and$$\;CF$$ are produced to $$A\;$$and$$\;B$$ respectively such that $$AB\;\parallel\;CD$$. If $$\angle FED=80^{\circ}$$, find $$\angle FBA$$.

    Solution
    $$CDEF\quad is\quad a\quad cyclic\quad quadrilateral.\\ \angle FED=80^o(Given)\\ \angle FED+\angle FCD=180^o ...(sum\quad of opposite\quad angles\quad of\quad cyclic\quad quadrilateral\quad is\quad 180^o)\\ \Rightarrow FCD=180^o-80^o=100^o.\\ Since\quad AB\parallel CD,\\ \Rightarrow ABCD\quad is\quad a\quad parallelogram.\\ \angle ABC+\angle BCD=180^o ...(Adjacent\quad angles\quad of\quad parallelogram.\quad are\quad supplementary)\\ \angle BCD=\angle FCD=100^o\\ \Rightarrow \angle ABC=180^o-100^o=80^o\\ \angle ABC=\angle FBA=80^o.\\ Hence,\quad option\quad C \quad is\quad correct.$$
  • Question 6
    1 / -0
    $$PQ$$ is a diameter and $$PQRS$$ is a cyclic quadrilateral. If $$\angle PSR=150^o$$, then measure of $$\angle RPQ$$ is:

    Solution
    $$PQRS$$ is a cyclic quadrilateral.
    Then, $$\angle PQR +\angle PSR= 180^{\circ}$$ ...[Opposite angles of cyclic quadrilateral are supplementary]
    $$\implies$$ $$\angle PQR +150^o= 180^{\circ}$$
    $$\implies$$ $$\angle PQR = 180^{\circ} - 150^{\circ} = 30^{\circ}$$.

    In $$\triangle PQR$$,
    $$\angle PRQ = 90^{\circ}$$ (Angle of a semicircle)
    Then, $$\angle RPQ + 90^{\circ} + 30^{\circ} = 180^{\circ}$$ ...[Angle sum property]
    $$\Rightarrow \angle RPQ + 120^{\circ} = 180^{\circ}$$
    $$\Rightarrow \angle RPQ = 60^{\circ}$$.

    Hence, option $$B$$ is correct.
  • Question 7
    1 / -0
    In figure, $$O$$ is centre, then $$\angle BXD=$$

    Solution
    Given $$\angle AOC={ 95 }^{ o }$$
    $$\angle ABC=\angle ADC=\cfrac { 95^o }{ 2 } \; \; (Half\; Angle)\\ \angle EBX=\angle EOX={ 180 }^{ o }-\cfrac { 95^o }{ 2 } =\cfrac { 265^o }{ 2 } $$
    In quadrilateral $$BEXD$$
    $$\angle BED+\angle EBX+\angle BXD+\angle XDE=360^o \\ 25^o+\cfrac{265^o}{2}+\angle BXD+\cfrac{265^o}{2}=360^o \\ \angle BXD=360^o-265^o-25^o \\ \angle BXD=70^o$$

  • Question 8
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral inscribed in a circle with the centre $$O$$. Then $$\angle OAD$$ is equal to:

    Solution
    $$ Given-\quad \\ ABCD\quad is\quad a\quad cyclic\quad quadrilateral\quad inscribed\quad in\quad a\\ circle\quad with\quad centre\quad O.\\ OA,\quad OB,\quad OC\quad \& \quad OD\quad have\quad been\quad joined.\\ \angle OAB={ 40 }^{ o },\quad \angle OBC={ 30 }^{ o }\quad \& \quad \angle OCD={ 50 }^{ o }.\\ To\quad find\quad out-\\ \angle OAD=?\\ Solution-\\ OC=OB\quad (radii\quad of\quad the\quad same\quad circle)\\ \therefore \quad \Delta OBC\quad is\quad an\quad isosceles\quad triangle.\\ \therefore \quad \angle OCB=\angle OBC={ 30 }^{ o }.\\ \therefore \quad \angle BCD=\angle OCD+\angle OCB={ 50 }^{ o }+{ 30 }^{ o }={ 80 }^{ o }.\\ Now,\quad ABCD\quad is\quad a\quad cyclic\quad quadrilateral.\\ So,\quad by\quad angle\quad sum\quad property\quad of\quad a\quad cyclic\quad quadrilateral,\\ we\quad get,\\ \angle BAD={ 180 }^{ o }-\angle BCD={ 180 }^{ o }-{ 80 }^{ o }={ 100 }^{ o }.\\ So,\quad \angle OAD=\angle BAD-\angle OAB={ 100 }^{ o }-{ 40 }^{ o }={ 60 }^{ o }.\\ Hence, \quad option\quad D \quad is \quad correct.$$
  • Question 9
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral. Then, find $$\angle x^{\circ}$$ as given in the figure.

    Solution
    $$\angle EDC+\angle ADC=180^o ...(Linear\quad pair\quad of\quad angles)\\ \angle EDC=80^o ...(Given)\\ Then, \angle EDC+\angle ADC=180^o\\ \angle ADC=180^o-\angle EDC=180^o-80^o=100^o.\\ ABCD\quad is\quad a\quad cyclic\quad quadrilateral.\\ Hence,\quad \angle ADC+\angle ABC=180^o ...(Sum\quad of\quad opposite\quad angles\quad is\quad 180^o)\\ \Rightarrow \angle ABC=180^o-\angle ADC\\ \quad \quad \quad \quad \quad \quad \quad =180^o-100^o\\ \quad \quad \quad \quad \quad \quad \quad =80^o.\\ Now, \angle ABF+\angle ABC=180^o\\ \angle ABF=180^o-\angle ABC\\ \angle ABF=\angle x ...(Given)\\ \Rightarrow \angle x=180^o-80^o\\ \Rightarrow \angle x=100^o.\\ Hence,\quad option \quad D \quad is\quad correct.$$
  • Question 10
    1 / -0
    In the given figure, the value of $$'a'$$ is:

    Solution
    Given- $$\overline { AOB }$$  is a diameter of a given circle. $$ABCD$$ is a cyclic quadrilateral. $$AC$$ is joined. Also, $$\angle ADC={ 130 }^{ \circ }$$.


    Since, $$ \overline { AOB }$$  is the diameter of the given circle, it subtends $$\angle ACB$$ to the circumference at $$C$$, i.e. $$  \angle ACB={ 90 }^{ \circ }$$ ...[ since it is an angle in a semicircle].


    Again,
    $$\angle ADC+\angle ABC=180^\circ$$ ...[ sum of opposite angles  of a cyclic quadrilateral is $${ 180 }^{ \circ }$$]
    $$\Rightarrow \angle ABC={ 180 }^{ \circ }-\angle ADC$$
    $$\Rightarrow \angle ABC={ 180 }^{ \circ }-130^{ \circ }$$
    $$\Rightarrow\angle ABC={ 42 }^{ \circ}$$.


     In $$\triangle ABC,$$
    $$  \angle ABC +\angle ACB+\angle CAB=180^\circ$$
                                     $$\angle CAB={ 180 }^{ \circ }-(\angle ACB+\angle ABC)$$
                                                   $$={ 180 }^{ \circ }-({ 90 }^{ \circ }+{ 50 }^{ \circ })$$
                                                   $$={ 40 }^{ \circ }$$

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now