Self Studies

Circles Test - 27

Result Self Studies

Circles Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the circle, reflex $$\angle AOC=x^o, \angle ABC=y^o$$. $$OABC$$ is a parallelogram, then find $$y$$.

    Solution
    In the circle, clearly, $$x=2y$$.

    Then, $$\angle A OC=360-x=360-2y$$.

    Here, $$ ABCD$$  is a parallelogram 
    Then, $${BCO}+  {AOC}=180^o$$ 
    $$\Rightarrow {BCO}+360-2y=180^o$$
    $$\Rightarrow 2y=BCO+180^o$$.

    Similarly, $$ABC+BCO=180^o$$
    $$\Rightarrow y+2y-180=180$$
    $$\Rightarrow 3y=360^o$$
    $$\Rightarrow y=120^o$$.

    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    Find $$\angle ASR$$.

    Solution
    $$PABQ\quad is\quad a\quad cyclic\quad quadilateral\\ \angle QPA=78^o...(Given). \\ Then, \angle QPA+\angle ABQ=180^o\\ \Rightarrow  78^o+\angle ABQ=180^o\\ \Rightarrow \angle ABQ=180^o-78^o=102^o....(1).\\ \angle ABR\quad and\quad \angle ABQ\quad are\quad linear\quad pair\quad of\quad angles\quad on\quad straight\quad line\quad QR\\ Then,  \angle ABQ+\angle ABR=180^o\\ \Rightarrow \angle ABR=180^o-\angle ABQ=180^o-102^o=78^o.\\ Hence,\quad \angle ABR\quad =78^o.\\ In\quad cyclic\quad quadilateral\quad ABCD,\quad \\ \angle ASR+\angle ABR=180^o\\ \Rightarrow \angle ASR=180^o-78^o\\ \Rightarrow \angle ASR=102^o.\\ Hence,\quad option\quad C \quad is\quad correct.$$
  • Question 3
    1 / -0
    In the given figure, $$PQRS$$ is a cyclic quadrilateral. Its diagonals $$PR$$ and $$QS$$ intersect each other at $$T$$. If $$\angle PRS=80^{\circ}\;and\;\angle RQS=50^{\circ}$$, calculate $$\angle PSR$$.

    Solution
    $$Given:\\ PQRS\ is\ a\ cyclic\ quadilateral.\\ \angle PRS=80^o....(1)\\ \angle RQS=50^o\\ \angle RQS=\angle RPS\ (Angles\ in\ the\ same\ segment\ are\ equal)\\ \Rightarrow \angle RPS=50^o...(2)\\ In\quad \triangle PSR\\ \angle PRS+\angle RPS+\angle PSR=180^o\ (Angle\ sum\ property)\\ 80^o+50^o+\angle PSR=180^o\ (From\ (1)\ and\ (2))\\ \Rightarrow \angle PSR=180^o-130^o\\ \ \ \ \ \angle PSR=50^o\\ Hence\ option\ (B)\ is\ right\ $$
  • Question 4
    1 / -0
    In the figure, $$O$$ is the center. If $$\angle MON=80^o$$, then $$\angle MQN$$ equals

    Solution
    Angle subtended by an arc at the center is double the angle subtended by the same are at any point on the circumference.
    $$\angle MON\quad =80^o\\ \angle MQN=\frac { 80^o }{ 2 } =40^o$$
  • Question 5
    1 / -0
    In the given figure $$\displaystyle \angle AOB=80^{\circ}$$ The value of x is

    Solution
    We have,
    $$\displaystyle \angle AOB=2\angle ACB$$
    [ Angle  of  the  centre  is  twice  at  th  angle  of circumference \right ]
    $$\displaystyle 80^{\circ}=2x$$
    $$\displaystyle \therefore x=\frac{80}{2}=40^{\circ}.$$
  • Question 6
    1 / -0
    In figure, $$\angle BAC = 60^{\circ}$$ and $$\angle BCA = 20^{\circ}$$ , find $$\angle ADC$$.

    Solution
    In $$\Delta ABC$$, we have 
    $$\angle BAC + \angle BCA + \angle ABC = 180^{\circ}$$....[Angle sum property]
    $$\Rightarrow 60^{\circ} + 20^{\circ} + \angle ABC = 180^o$$
    $$\therefore \angle ABC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$.

    $$ABCD$$ is a cyclic quadrilateral,
    $$\therefore \angle ABC + \angle ADC = 180^{\circ}$$.....[Since, opposite angles of a cyclic quadrilateral are supplementary]
    $$\implies$$ $$100^{\circ} + \angle ADC = 180^{\circ}$$
    $$\implies \angle ADC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$.

    Hence, option $$C$$ is correct.
  • Question 7
    1 / -0
    In the figure, $$\angle$$ B is equal to:

    Solution
    Since, $$APQD$$ is a cyclic quadrilateral,
    therefore $$\angle A + \angle DQP = 180^o$$ ...(opposite angles of cyclic quadrilateral are supplementary)
    $$\implies$$ $$\angle DQP = 180^o  -85^o  =95^o$$.

    Now, $$\angle PQC = 180^o - \angle DQP=180^o-95^o=85^o$$ ...[linear pairs].

    $$\therefore \angle B = 180^o  -85^o =95^o$$ ...(opposite angles of cyclic quadrilateral are supplementary).

    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    In the figure above, if O is the centre of the circle, find the value of y.

    Solution
    Given that, the centre of the circle is $$O$$ and $$\angle BOD=140^\circ$$
    To find out: The value of $$y$$

    We know that, in a circle, the angle subtended by an arc at the centre is twice the angle subtended by the same arc at any point on the circle.
    $$\therefore \ \angle BOD = 2 \angle BAD$$
    $$\Rightarrow 140^{\circ} = 2 \angle BAD$$
    $$\displaystyle \Rightarrow \angle BAD = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$$

    Now, in cyclic quadrilateral ABCD,
    $$\angle BAD + \angle BCD = 180^{\circ}$$          [Opposite angles of a cyclic quadrilateral are supplementary]
    $$\therefore \ 70^{\circ} + \angle BCD = 180^{\circ}$$
    $$\therefore \angle BCD = 180^{\circ} - 70^{\circ} = 110^{\circ}$$
    Also, $$\angle BCD + \angle DCP = 180^{\circ}$$        [Linear pair]
    $$\Rightarrow 110^{\circ} + y = 180^{\circ}$$
    $$\therefore \  y = 70^{\circ}$$

    Hence, option B is correct.
  • Question 9
    1 / -0
    In a cyclic quadrilateral $$ABDC,\,\angle CAB=80^{\circ}$$ and $$\angle ABC=40^{\circ}$$. The measure of the $$\angle ADB$$ will be?
    Solution
    In $$\Delta ACB$$,
    $$\because\;\angle ACB=180^{\circ}-(80^{\circ}+40^{\circ})=60^{\circ}$$
    $$\therefore\;\angle ADB=\angle ACB$$
    $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=60^{\circ}$$
  • Question 10
    1 / -0
    In fig, a is the centre of the circle. If $$\angle$$ BOD 160$$^{\circ}$$  find the values of x and y.

    Solution
    In the cyclic quadrilateral ABCD
    $$\displaystyle \angle BCD = \frac{1}{2} \angle BOD$$
    [Angle made by an arc at the centre is double the angle made by it, at any other point on the remaining part of the circle]
    $$\displaystyle \therefore \angle x = \frac{1}{2} \times 160^{\circ} = 80^{\circ}$$
    $$\therefore x = 80^{\circ}$$
    $$\angle x + \angle y = 180^{\circ}$$
    [opp. angles of a cyclic quadrilateral]
    $$\therefore \angle y = 180^{\circ} - \angle x$$
    $$\angle y = 180^{\circ} - 80^{\circ} = 100^{\circ}$$
    $$y = 100^{\circ}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now