Self Studies

Circles Test - 28

Result Self Studies

Circles Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    One of the base angle a cyclic trapezium is double the other. What is the measure of the larger angle?
    Solution
    In cyclic trapezium,
    Sum of opposite angle $$=180^o$$ ...[opposite angles of a cyclic quadrilateral are supplementary].

    Let the smaller angle be $$x$$
    and larger angle $$=2x$$.

    Then, $$2x+x=180^o \implies 3x=180^o \implies x=60^o$$.

    Therefore, Larger angle $$=2x=2\times 60^o=120^o$$.

    Hence, option $$D$$ is correct.

  • Question 2
    1 / -0
    Find $$x.$$

    Solution
    ABCD is a quadrilateral inside the circle,
    $$\angle D + \angle B = 180^o$$
    $$130^o + \angle B = 180^o$$
    $$\angle B = 50^o$$
    AB is diameter $$\angle C = 90^o$$    [angle in a semicircle]
    In $$\Delta ABC$$
    $$\angle A + \angle B + \angle C = 180^o$$
    $$\angle A + 50^o + 90^o = 180^o$$
    $$\Rightarrow \angle A + 140^o = 180^o$$
    $$\Rightarrow \angle A = 180^o - 140^o$$
                $$=40^o$$
    $$\therefore \angle CAB = 40^o \Rightarrow x = 40^o$$
    option (A) is correct.

  • Question 3
    1 / -0
    If $$O$$ is the centre of the circle and $$A, B$$ and $$C$$ are points on its circumference and $$\angle AOC = 130^{\circ}$$, find $$\angle ABC$$.

    Solution
    Take any point $$P$$ on the circumference of the circle as shown.
    Join $$AP$$ and $$CP$$.

    $$\because ABC$$ subtends $$\angle AOC$$ at centre $$O$$ and $$\angle APC$$ at any point $$P$$ on the circumference of the circle.
    $$\therefore \angle AOC = 2 \angle APC$$     [$$\because$$ Angle subtended by an arc at the centre is twice the angle subtended by the same arc at any point on the circumference]
    $$\displaystyle \implies \angle APC = \frac{1}{2} \angle AOC  ~~~[ \because AOC = 130^{\circ}]$$
    $$\implies$$ $$\displaystyle \frac{1}{2} \times 130^{\circ} = 65^{\circ}$$.

    $$\because$$ $$ABCP$$ is a cycle quadrilateral,
    $$\implies \angle APC + \angle ABC = 180^{\circ}$$ ...[$$\because$$ sum of opposite angles of a cyclic quadrilateral is $$180^{\circ}$$]
    $$\implies 65^{\circ} + \angle ABC = 180^{\circ}$$
    $$\therefore \angle ABC = 180^{\circ} - 65^{\circ} = 115^{\circ}$$.

    Hence, option $$B$$ is correct.
  • Question 4
    1 / -0
    In the given figure, AB=AC and $$\displaystyle \angle ABC=68^{\circ},$$ what is the value of $$\displaystyle \angle BPC$$?

    Solution
    Theorem: Chord of a circle subtends equal angles at different points on the circumference of the circle on same side

    $$\Rightarrow \angle BAP=\angle BPC$$

    $$ AB=AC\Rightarrow \angle B=\angle C=68^{°}$$ (Opposite angles of equal sides are equal)
    In $$\triangle ABC $$
    $$\angle A+ \angle B + \angle C =180^o$$ (Sum of angles in a triangle )

    $$68^o+68^o+ \angle A = 180^o$$

    $$136^o+\angle A = 180^o$$

    $$\Rightarrow \angle A=44^{°}$$

    $$\Rightarrow \angle A=\angle BAC =\angle BPC =44^{°}$$ (Angles in same segment are equal )
  • Question 5
    1 / -0
    In the given figure, $$BD=DC$$ and $$\displaystyle \angle DBC=30^{\circ}$$ what is the value of $$\displaystyle \angle BAC$$?

    Solution
    As $$BD=DC$$ ...... (given)
    $$\Rightarrow \angle DBC=\angle DCB=30^{\circ}$$

    $$\Rightarrow \angle BDC =180^\circ -30^\circ-30^\circ=120^{\circ}$$

    As $$ABCD$$ is a cyclic quadrilateral ; $$\angle BAC+\angle BDC =180^{\circ}$$

    $$\Rightarrow \angle BAC =180^{\circ}-120^{\circ} =60^{\circ}$$
  • Question 6
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral, in which $$BC$$ is parallel to $$AD$$, $$\displaystyle\angle ADC=\displaystyle 110^{\circ}$$ and $$\displaystyle \angle BAC=50^{\circ}$$. What is the value of $$\displaystyle \angle DAC$$?

    Solution
    $$ABCD$$ is a cyclic quadrilateral.
    Then, $$\angle ABC+\angle ADC=180^o$$ ...[Opposite angles of a cyclic quadrilateral are supplementary]
    $$\Rightarrow$$ $$\angle ABC =180^{\circ}-110^{\circ} =70^{\circ}$$.

    In $$\triangle ABC$$,
    $$\angle ABC+\angle ACB+\angle BAC=180^o$$ ...[Angle sum property]
    $$\Rightarrow$$ $$70^o+\angle ACB+50^o=180^o$$
    $$\Rightarrow$$ $$ \angle ACB=180^{\circ}-(50^{\circ}+70^{\circ})=60^{\circ}$$.

    Given, $$BC$$ and $$AD$$ are parallel,
    $$\Rightarrow \angle ACB=\angle DAC =60^{\circ}$$ ...[Alternate interior angles].

    Hence, option $$C$$ is correct.
  • Question 7
    1 / -0
    What is the value of $$ \displaystyle \angle ABC $$ ?

    Solution
    Extending A and C onto the circumference to D as shown in the figure

    Theorem: Angle subtended by an arc at the centre is double the angle subtended by the same arc at the circumference of a circle

    $$\Rightarrow \angle AOC=2\times \angle ADC $$

    $$\Rightarrow \angle ADC=\dfrac {130}{2}=65^o$$

    As $$ABCD$$ is a cyclic quadrilateral, sum of its opposite interior angles are equal to $$180^o$$ 

    $$\Rightarrow \angle ADC+\angle CBA =180^o$$

    $$\Rightarrow \angle ABC =180^o - 65^o=115^o$$

  • Question 8
    1 / -0
    ABCD is a cyclic trapezium and $$ \displaystyle  AB\parallel CD $$. If $$AB$$ is the diameter of the circle and $$ \displaystyle  \angle CAB=30^{\circ}   $$,  then the value of $$ \displaystyle \angle ADC $$ is:
    Solution
    Here, $$\angle CAB=30^o$$ ...[Given].
    Also, $$\angle ACB=90^o$$ ...[Angle inscribed in a semi-circle].

    Now, in $$\triangle ACB$$,
    $$\angle ACB+\angle CAB+\angle ABC=180^o$$ ...[Angle sum property]
    $$\Rightarrow$$  $$90^o+30^o+\angle ABC=180^o$$
    $$\Rightarrow$$  $$\angle ABC=180^o-120^o$$
    $$\Rightarrow$$  $$\angle ABC=60^o$$.

    Here, $$ABCD$$ is a cyclic quadrilateral.
    We know that, sum of opposite angles of a cyclic quadrilateral is $$180^o$$.
    $$\therefore$$   $$\angle ABC+\angle ADC=180^o$$
    $$\Rightarrow$$  $$60^o+\angle ADC=180^o$$
    $$\Rightarrow$$  $$\angle ADC=180^o-60^o$$
    $$\Rightarrow$$  $$\angle ADC=120^o.$$

    Hence, option $$D$$ is correct.

  • Question 9
    1 / -0
    In the given figure $$\text{O}$$ is the center of the circle and measure of $$\angle \text{AOC} $$ is $$ \displaystyle 100^{\circ}  $$ what is the value of $$ \displaystyle \angle \text{ADC}  $$ ?

    Solution
    The angle subtended by an arc at the center of the circle is twice the angle subtended by it on the circumference of the circle.

    $$\implies \angle \text{ADC}=\dfrac{1}{2}\angle \text{AOC}$$

                   $$=\dfrac{1}{2}\times 100$$

                   $$=50^{\circ}$$
  • Question 10
    1 / -0
    ABCD is cyclic quadrilateral. The tangents to a circle at A and C meet at P. If $$\angle$$ APC = 50$$^{\circ} $$, then the value of $$\angle$$ ADC is:
    Solution
    Given $$\angle APC=50^0 $$

    As the radius is always perpendicular to tangent at the point of contact, 
    $$\angle OCP=\angle OAP=90^0$$

    As $$AOCP $$ is a quadrilateral, sum of all its interior angles are equal to $$360^0$$

    $$\therefore\  \angle AOC=130^0\quad \quad [360^0-(90^0+90^0+50^0)]$$

    We know that, angle subtended by an arc at the center of a circle is twice the angle subtended by the same arc on the circumference of the circle. 

    $$\therefore \  \angle ADC=\dfrac{130^0}{2}$$
    $$=65^0$$

    Hence, $$\angle ADC=65^0$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now