Self Studies

Circles Test - 33

Result Self Studies

Circles Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, O is the centre of the circle .What is the value of $$x?$$

    Solution
    Given: $$O$$ is the centre of the circle.
    So, $$OP,OR,OQ$$ are the radius of the circle.
    So, $$OP=OR=OQ$$

    Now,
    Since $$OP=OQ$$
    $$\therefore \triangle OPQ$$ is isosceles.

    Hence $$\angle OPQ=\angle OQP={ 25 }^{ \circ }$$

    From angle sum property,
    $$  \angle POQ={ 180 }^{ \circ }-(\angle OPQ+\angle OQP)$$
                  $$\\ ={ 180 }^{ \circ }-({ 25 }^{ \circ }+{ 25 }^{ \circ })\\ ={ 180 }^{ \circ }-50^{ \circ }\\ =130^{ \circ }$$

    Again, $$OQ=OR$$
    $$\therefore \triangle OQR$$ is isosceles.

    Hence $$\angle ORQ=\angle OQR={ 30 }^{ \circ }$$

    By angle sum property

    $$ \angle QOR={ 180 }^{ \circ }-(\angle ORQ+\angle OQR)$$
                  $$={ 180 }^{ \circ }-(30^{ \circ }+30^{ \circ })\\ ={ 180 }^{ \circ }-60^{ \circ }\\ =120^{ \circ }$$

    We know that, in a circle the central angle is twice of any inscribed angle subtended by the same arc.

    Here, $$  \angle POR$$ is the central angle and $$\angle PSR$$ is the inscribed angle subtended by the same arc.

    $$\therefore \angle POR=2\angle PSR$$

    $$\Rightarrow \angle POQ+\angle QOR=2\angle PSR$$

    $$ \Rightarrow { 130 }^{ \circ }+{ 120 }^{ \circ }=2x$$

    $$\Rightarrow 2x={ 250 }^{ \circ }$$

    $$ \Rightarrow x=125^{ \circ }$$
  • Question 2
    1 / -0
    If the perimeter and the area of a circle are numerically equal, then the radius of the circle is
    Solution
    Given,
    Numerically perimete of the circle is equal to area of circle

    $$\Rightarrow 2\pi r=\pi r^2$$

    $$\Rightarrow 2=r$$

    $$\therefore r=2$$
  • Question 3
    1 / -0
    In the figure ,O is the center of the circle. The value of $$(2a + b + C)$$ in

    Solution

  • Question 4
    1 / -0
    In the figure given, $$O$$ is the center of the circle, if $$\angle PAB=108^{o}$$, then find $$\angle BCQ$$.

  • Question 5
    1 / -0
    In the given quadrilateral $$PQRS $$, if $$ \angle RSP = {80}^{0} $$, then $$ \angle  RQT= $$ ____.

    Solution
    Given is a cyclic quadrilateral $$PQRS$$.
    We know that,
    In cyclic quadrilaterals sum of opposite angles is $$180^0$$.

    So, 
    $$\angle RSP + \angle PQR = 180^0$$
    $$\Rightarrow 80^0 + \angle PQR = 180^0$$
    $$\Rightarrow \angle PQR = 100^0$$.

    Also, we know that sum of angles on a straight line is $$180^0$$,

    So,
    $$\angle PQR + \angle RQT = 180^0$$
    $$\Rightarrow 100^0 + \angle RQT = 180^0$$
    $$\Rightarrow \angle RQT = 80^0$$.

    Hence, option $$B$$ is the correct.
  • Question 6
    1 / -0
    An arc subtends an angle of $$45^{o}$$ in its alternate segment then the angle made by its corresponding major arc is at the centre 
    Solution
     Here, major arc $$AB$$ is subtending  $$ 45^{\circ}$$ in the alternate (minor) segment
    To find : angle $$x$$
    Soluton: As angle around a point is $$ 360^{\circ}$$
    Around $$O$$, 
    $$x + 45^o =360^o$$    
    $$ \Rightarrow  x = 315^{\circ}  $$
  • Question 7
    1 / -0
    In the given circle, $$AD=BC,\angle BAC={30}^{o}$$ and $$\angle CBD={70}^{o}$$
    Find
    $$(i)\,\angle BCD$$
    $$(ii)\,\angle BCA$$
    $$(iii)\,\angle ABC$$
    $$(iv)\,\angle ADB$$

    Solution

  • Question 8
    1 / -0
    In figure, $$O$$ is the centre of the circle, then 

    Solution
    On the basis of given figure, we can conclude
    $$\angle 3=\angle 4$$ and $$\angle x=2\angle 3$$

    $$\Rightarrow \angle x=\angle 3+\angle 4$$.....(i)

    $$\angle y=\angle 3+\angle 1$$........(ii)

    $$(i)-(ii)$$ gives,

    $$\angle x-\angle y=\angle 4-\angle 1$$.......(iii)

    $$\angle 4=\angle z+\angle 1$$

    $$\Rightarrow \angle 4-\angle 1=\angle z$$.........(iv)

    From (iii)  and (iv) we get,

    $$\angle x-\angle y=\angle z$$

    $$\Rightarrow \angle z+\angle y=\angle x$$

    $$\therefore \angle x=\angle y+\angle z$$

  • Question 9
    1 / -0
    BC is the diameter of a circle. Points A and D are situated on the circumference of the semi circle $$\angle$$ABD$$=35^o$$ and $$\angle$$BCD$$=60^o$$, $$\angle$$ADB equal to?

    Solution

  • Question 10
    1 / -0
    $$ABCD$$ is a cyclic quadrilateral such that $$\angle ADB=30^{o}$$ and $$\angle DCA=80^{o}$$, then $$\angle DAB=$$?
    Solution
    Given,
    $$\angle ADB = 30^0$$ and $$ \angle DCA = 80^0$$.

    Now,
    $$\angle DCA = \angle DBA = 80^0$$   (Angle subtended by same chord are equal).

    In $$\triangle ADB$$,
    $$\angle ADB + \angle DBA + \angle DAB = 180^0$$    (Sum of angles in triangle is $$180^0$$)
    $$\implies$$ $$\angle DAB = 180^0 - 80^0 - 30^0 = 70^0$$.

    Hence, the measure of $$\angle DAB$$ is $$70^0.$$
    Therefore, option $$A$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now