Given: $$O$$ is the centre of the circle.
So,
$$OP,OR,OQ$$ are the radius of the circle.So, $$OP=OR=OQ$$
Now,
Since $$OP=OQ$$
$$\therefore \triangle OPQ$$ is isosceles.
Hence $$\angle OPQ=\angle OQP={ 25 }^{ \circ }$$
From angle sum property,
$$ \angle POQ={ 180 }^{ \circ }-(\angle OPQ+\angle OQP)$$
$$\\ ={ 180 }^{ \circ }-({ 25 }^{ \circ }+{ 25 }^{ \circ })\\ ={ 180 }^{ \circ }-50^{ \circ }\\ =130^{ \circ }$$
Again, $$OQ=OR$$
$$\therefore \triangle OQR$$ is isosceles.
Hence $$\angle ORQ=\angle OQR={ 30 }^{ \circ }$$
By angle sum property
$$ \angle QOR={ 180 }^{ \circ }-(\angle ORQ+\angle OQR)$$
$$={ 180 }^{ \circ }-(30^{ \circ }+30^{ \circ })\\ ={ 180 }^{ \circ }-60^{ \circ }\\ =120^{ \circ }$$
We know that, in a circle the central angle is twice of any inscribed angle subtended by the same arc.
Here, $$ \angle POR$$ is the central angle and $$\angle PSR$$ is the inscribed angle subtended by the same arc.
$$\therefore \angle POR=2\angle PSR$$
$$\Rightarrow \angle POQ+\angle QOR=2\angle PSR$$
$$ \Rightarrow { 130 }^{ \circ }+{ 120 }^{ \circ }=2x$$
$$\Rightarrow 2x={ 250 }^{ \circ }$$
$$ \Rightarrow x=125^{ \circ }$$