`
Self Studies

Herons Formula Test - 26

Result Self Studies

Herons Formula Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the area of quadrilateral $$ABCD$$.

    Solution
    Area of $$\triangle ABC$$
    $$S=\dfrac{5+4+3}{2}=\dfrac{9+3}{2} = \dfrac{12}{2} = 6cm^2$$
    $$=\sqrt{s(s-a)(s-b)(s-c)}$$
    $$=\sqrt{6\times (6-5)(6-4)(6-3)}$$
    $$=\sqrt{6\times 1\times 2\times 3}$$
    $$=\sqrt{3\times 2\times 3\times 2}$$
    $$=6cm^2$$
    Area of $$\triangle ABC$$
    $$s=\dfrac{5+5+4}{2} = \dfrac{14}{2} = 7cm^2$$
    $$=\sqrt{s(s-a)(s-b)(s-c)}$$
    $$=\sqrt{7\times 2\times 2\times 3}$$
    $$=2\sqrt{21}$$
    Total Area $$=(6+2\sqrt{21}) cm^2$$
  • Question 2
    1 / -0
    The parallel sides of a parallelogram are $$40$$ and $$15$$ m and one of the diagonals is $$35$$ m. Find the area of the parallelogram, if the distance between the parallel sides is $$50$$ m. (Use Heron's formula)
    Solution
    In $$\parallel$$ gm $$ABCD, AB = CD = 40\ m$$ and $$AD = BC = 15\ m$$, Diagonal, $$AC = 35\ m$$
    In $$\Delta ABC$$, $$s= \dfrac{40 + 15 + 35}{2}$$ $$= 45\ m$$
    Area of $$\parallel$$ gm = $$2$$ x Area of $$\Delta  ABC$$
    = $$2\times \sqrt{S(S-a)(S-b)(S-c)}$$
    = $$2\times \sqrt{45(45-40)(45-15)(45-35)}$$
    = $$2\times \sqrt{45(5)(30)(10)}$$
    = $$300\sqrt{3}$$ $$m^{2}$$
  • Question 3
    1 / -0
    The parallel sides of a parallelogram are $$20$$ and $$10$$ m and one of the diagonals is $$12$$ m. Find the area of the parallelogram. (Use Heron's formula)
    Solution
    In $$\parallel$$ gm ABCD, AB = CD = 20 m and AD = BC = 10m, Diagonal, AC = 12 m
    In $$\Delta$$ ABC, $$s= \dfrac{20 + 10 + 12}{2}$$ = 21 m
    Area of $$\parallel$$ gm = 2 x Area $$\Delta $$ ABC
    = 2$$\sqrt{S(S-a)(S-b)(S-c)}$$
    = 2$$\sqrt{21(21-20)(21-10)(21-12)}$$
    = 2$$\sqrt{21(1)(11)(9)}$$
    = 6$$\sqrt{231}$$ $$m^{2}$$
  • Question 4
    1 / -0
    The sides of a triangle are $$5\ cm, 12\ cm$$ and $$13\ cm$$, what is its area?
    Solution
    Area of $$\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad \quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 13+12+5 }{ 2 } =15cm$$

    $$\therefore $$ ar of $$\triangle =\sqrt { 15\left( 15-13 \right) \left( 15-12 \right) \left( 15-5 \right)  } =\sqrt { 15\times 2\times 3\times 10 } =30{ cm }^{ 2 }$$

    Therefore area of triangle  $$={ 30cm }^{ 2 }=0.003{ m }^{ 2 }\left[ \because \quad 1{ m }^{ 2 }=10000{ cm }^{ 2 } \right] $$
  • Question 5
    1 / -0
    A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $$15 cm, 14 cm, 13 cm$$, and the parallelogram stands on the base of $$15$$ cm. Find the height of the parallelogram.
    Solution
    Area of triangle = $$\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } $$
    $$S=\dfrac { a+b+c }{ 2 } =\dfrac { 15+14+13 }{ 2 } =21cm$$
    $$\therefore \quad $$ area of $$\triangle =\sqrt { 21\left( 21-15 \right) \left( 21-14 \right) \left( 21-13 \right)  } =\sqrt { 21\times 6\times 7\times 8 } $$
                               = $$\sqrt { 3\times 7\times 3\times 2\times 7\times 4\times 2 } =2\times 2\times 3\times 7$$
                               = $${ 84cm }^{ 2 }$$
    Now, area of $$\parallel $$gm = area of $$\triangle $$ = $$b\times h=84{ cm }^{ 2 }$$
    $$\Rightarrow \quad 15\times h=84\Rightarrow h=\dfrac { 84 }{ 15 } =5.6cm$$
    $$\therefore $$  Height of $$\parallel $$gm = $$5.6cm$$
  • Question 6
    1 / -0
    What is the area of a triangle whose sides are $$13\ cm, 14\ cm$$ and $$15\ cm$$?
    Solution
    $$S=\dfrac { a+b+c }{ 2 } =\dfrac { 13+14+15 }{ 2 } =21cm$$
    area of $$\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } =\sqrt { 21\left( 21-13 \right) \left( 21-14 \right) \left( 21-15 \right)  } $$
                        $$=\sqrt { 21\times 8\times 7\times 6 } =\sqrt { 3\times 7\times 2\times 2\times 2\times 7\times 2\times 3 } =2\times 2\times 3\times 7$$
                        $$={ 84cm }^{ 2 }$$
  • Question 7
    1 / -0
    Find the number of trees that can be planted in a triangular ground having sides $$51m, 37m$$ and $$20m$$, when each tree occupies $$6m^2$$ of space:
    Solution
    Area of $$\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 51+37+20 }{ 2 } =54m$$

    $$\therefore \quad $$ Area of triangle ground  $$=\sqrt { 54\left( 54-51 \right) \left( 54-37 \right) \left( 54-20 \right)  } $$

                                                      $$=\sqrt { 54\times 3\times 17\times 34 } =306{ m }^{ 2 }$$
              Number of trees  $$=\dfrac { 306 }{ 6 } =51$$
  • Question 8
    1 / -0
    In $$\triangle ABC, AB = 6\ cm, BC = 7\ cm$$ and $$AC = 5\ cm$$. Find the area of $$\triangle ABC$$
    Solution
    Using Heron's formula,

    Area of a triangle $$=\sqrt{s(s-a)(s-b)(s-c)}$$

    where $$s=$$ semiperimeterof the triangle
                $$a=$$ length of side $$BC$$ 
                $$b=$$ length of side $$AC$$
                $$c=$$ length of side $$AB$$


    In $$\triangle ABC,\ a=7,\ b=5,\ c=6$$

    Semiperemeter of $$\triangle ABC=s=\dfrac{a+b+c}{2}$$

                                                         $$=\dfrac{7+5+6}{2}$$

                                                          $$=9$$ 
     
    Hence, the area of $$\triangle ABC=\sqrt{9\times (9-7)\times (9-5)\times (9-6)}$$ 

                                                  $$=\sqrt{9\times 3\times 2\times 4}$$           

                                                  $$={6\sqrt{6}\ cm^{2}}$$
  • Question 9
    1 / -0
    Find the area of the parallelogram with sides $$11 cm$$ and $$13 cm$$ and one of the diagonals as $$16 cm. $$
    Solution

    ar $$\parallel $$gm ABCD = $$2\times ar\triangle ABC$$
    ar $$\triangle $$ABC = $$\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 16+13+11 }{ 2 } =20cm$$
    $$\therefore $$ ar $$\triangle $$ABC = $$\sqrt { 20\left( 20-16 \right) \left( 20-13 \right) \left( 20-11 \right)  } =\sqrt { 20\times 4\times 7\times 9 } =\sqrt { 5\times 4\times 4\times 7\times 9 } =4\times 3\sqrt { 35 } =12\sqrt { 35 } { cm }^{ 2 }$$
    $$\therefore $$ ar $$\triangle $$ABCD = $$2\times 12\sqrt { 35 } =24\sqrt { 35 } { cm }^{ 2 }$$

  • Question 10
    1 / -0
    Find the area of the quadrilateral whose sides are $$9 m ,40 m, 28 m, 15 m$$. The angle between first two sides is $$90^o$$.
    Solution

    Area of quadrilateral $$ABCD$$ = ar $$[\triangle ABC]$$ + ar $$[\triangle ACD]$$
    In $$\triangle ABC$$ :
      $$ar\ [\triangle ABC] = \dfrac { 1 }{ 2 } \times BC\times AB\\=\dfrac { 1 }{ 2 } \times 40m\times 9m=180{ m }^{ 2 }$$

    Using pythagoras theorem,
     $$AC= \sqrt { { AB }^{ 2 }+{ BC }^{ 2 } } \\ =\sqrt { { \left( 9 \right)  }^{ 2 }+{ \left( 40 \right)  }^{ 2 } }\\ =\sqrt { 1681 } =41m$$

    Using Heron's formula,
    $$ar [\triangle ACD] = \sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } \\\quad s=\dfrac { a+b+c }{ 2 } \\\ \ \ \quad =\dfrac { 41+28+15 }{ 2 } \\\quad \ \ \ =\dfrac { 84 }{ 2 } =42m$$

    $$ ar [\triangle ACD ]= \sqrt { 42\left( 42-41 \right) \left( 42-28 \right) \left( 42-15 \right)  }\\ \quad \quad \quad \ \ \ \quad =\sqrt { 42\times 1\times 14\times 27 } =126{ m }^{ 2 }$$
    Therefore, area of quadrilateral $$ABCD$$ 
    $$=180 + 126$$
    $$=306\  m^{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now