Self Studies

Herons Formula Test - 26

Result Self Studies

Herons Formula Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the area of quadrilateral ABCDABCD.

    Solution
    Area of ABC\triangle ABC
    S=5+4+32=9+32=122=6cm2S=\dfrac{5+4+3}{2}=\dfrac{9+3}{2} = \dfrac{12}{2} = 6cm^2
    =s(sa)(sb)(sc)=\sqrt{s(s-a)(s-b)(s-c)}
    =6×(65)(64)(63)=\sqrt{6\times (6-5)(6-4)(6-3)}
    =6×1×2×3=\sqrt{6\times 1\times 2\times 3}
    =3×2×3×2=\sqrt{3\times 2\times 3\times 2}
    =6cm2=6cm^2
    Area of ABC\triangle ABC
    s=5+5+42=142=7cm2s=\dfrac{5+5+4}{2} = \dfrac{14}{2} = 7cm^2
    =s(sa)(sb)(sc)=\sqrt{s(s-a)(s-b)(s-c)}
    =7×2×2×3=\sqrt{7\times 2\times 2\times 3}
    =221=2\sqrt{21}
    Total Area =(6+221)cm2=(6+2\sqrt{21}) cm^2
  • Question 2
    1 / -0
    The parallel sides of a parallelogram are 4040 and 1515 m and one of the diagonals is 3535 m. Find the area of the parallelogram, if the distance between the parallel sides is 5050 m. (Use Heron's formula)
    Solution
    In \parallel gm ABCD,AB=CD=40 mABCD, AB = CD = 40\ m and AD=BC=15 mAD = BC = 15\ m, Diagonal, AC=35 mAC = 35\ m
    In ΔABC\Delta ABC, s=40+15+352s= \dfrac{40 + 15 + 35}{2} =45 m= 45\ m
    Area of \parallel gm = 22 x Area of Δ ABC\Delta  ABC
    = 2×S(Sa)(Sb)(Sc)2\times \sqrt{S(S-a)(S-b)(S-c)}
    = 2×45(4540)(4515)(4535)2\times \sqrt{45(45-40)(45-15)(45-35)}
    = 2×45(5)(30)(10)2\times \sqrt{45(5)(30)(10)}
    = 3003300\sqrt{3} m2m^{2}
  • Question 3
    1 / -0
    The parallel sides of a parallelogram are 2020 and 1010 m and one of the diagonals is 1212 m. Find the area of the parallelogram. (Use Heron's formula)
    Solution
    In \parallel gm ABCD, AB = CD = 20 m and AD = BC = 10m, Diagonal, AC = 12 m
    In Δ\Delta ABC, s=20+10+122s= \dfrac{20 + 10 + 12}{2} = 21 m
    Area of \parallel gm = 2 x Area Δ\Delta ABC
    = 2S(Sa)(Sb)(Sc)\sqrt{S(S-a)(S-b)(S-c)}
    = 221(2120)(2110)(2112)\sqrt{21(21-20)(21-10)(21-12)}
    = 221(1)(11)(9)\sqrt{21(1)(11)(9)}
    = 6231\sqrt{231} m2m^{2}
  • Question 4
    1 / -0
    The sides of a triangle are 5 cm,12 cm5\ cm, 12\ cm and 13 cm13\ cm, what is its area?
    Solution
    Area of =s(sa)(sb)(sc) ,s=a+b+c2=13+12+52=15cm\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad \quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 13+12+5 }{ 2 } =15cm

    \therefore ar of =15(1513)(1512)(155) =15×2×3×10=30cm2\triangle =\sqrt { 15\left( 15-13 \right) \left( 15-12 \right) \left( 15-5 \right)  } =\sqrt { 15\times 2\times 3\times 10 } =30{ cm }^{ 2 }

    Therefore area of triangle  =30cm2=0.003m2[1m2=10000cm2]={ 30cm }^{ 2 }=0.003{ m }^{ 2 }\left[ \because \quad 1{ m }^{ 2 }=10000{ cm }^{ 2 } \right]
  • Question 5
    1 / -0
    A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 15cm,14cm,13cm15 cm, 14 cm, 13 cm, and the parallelogram stands on the base of 1515 cm. Find the height of the parallelogram.
    Solution
    Area of triangle = s(sa)(sb)(sc) \sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  }
    S=a+b+c2=15+14+132=21cmS=\dfrac { a+b+c }{ 2 } =\dfrac { 15+14+13 }{ 2 } =21cm
    \therefore \quad area of =21(2115)(2114)(2113) =21×6×7×8\triangle =\sqrt { 21\left( 21-15 \right) \left( 21-14 \right) \left( 21-13 \right)  } =\sqrt { 21\times 6\times 7\times 8 }
                               = 3×7×3×2×7×4×2=2×2×3×7\sqrt { 3\times 7\times 3\times 2\times 7\times 4\times 2 } =2\times 2\times 3\times 7
                               = 84cm2{ 84cm }^{ 2 }
    Now, area of \parallel gm = area of \triangle b×h=84cm2b\times h=84{ cm }^{ 2 }
    15×h=84h=8415=5.6cm\Rightarrow \quad 15\times h=84\Rightarrow h=\dfrac { 84 }{ 15 } =5.6cm
    \therefore   Height of \parallel gm = 5.6cm5.6cm
  • Question 6
    1 / -0
    What is the area of a triangle whose sides are 13 cm,14 cm13\ cm, 14\ cm and 15 cm15\ cm?
    Solution
    S=a+b+c2=13+14+152=21cmS=\dfrac { a+b+c }{ 2 } =\dfrac { 13+14+15 }{ 2 } =21cm
    area of =s(sa)(sb)(sc) =21(2113)(2114)(2115) \triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } =\sqrt { 21\left( 21-13 \right) \left( 21-14 \right) \left( 21-15 \right)  }
                        =21×8×7×6=3×7×2×2×2×7×2×3=2×2×3×7=\sqrt { 21\times 8\times 7\times 6 } =\sqrt { 3\times 7\times 2\times 2\times 2\times 7\times 2\times 3 } =2\times 2\times 3\times 7
                        =84cm2={ 84cm }^{ 2 }
  • Question 7
    1 / -0
    Find the number of trees that can be planted in a triangular ground having sides 51m,37m51m, 37m and 20m20m, when each tree occupies 6m26m^2 of space:
    Solution
    Area of =s(sa)(sb)(sc) ,s=a+b+c2=51+37+202=54m\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 51+37+20 }{ 2 } =54m

    \therefore \quad Area of triangle ground  =54(5451)(5437)(5420) =\sqrt { 54\left( 54-51 \right) \left( 54-37 \right) \left( 54-20 \right)  }

                                                      =54×3×17×34=306m2=\sqrt { 54\times 3\times 17\times 34 } =306{ m }^{ 2 }
              Number of trees  =3066=51=\dfrac { 306 }{ 6 } =51
  • Question 8
    1 / -0
    In ABC,AB=6 cm,BC=7 cm\triangle ABC, AB = 6\ cm, BC = 7\ cm and AC=5 cmAC = 5\ cm. Find the area of ABC\triangle ABC
    Solution
    Using Heron's formula,

    Area of a triangle =s(sa)(sb)(sc)=\sqrt{s(s-a)(s-b)(s-c)}

    where s=s= semiperimeterof the triangle
                a=a= length of side BCBC 
                b=b= length of side ACAC
                c=c= length of side ABAB


    In ABC, a=7, b=5, c=6\triangle ABC,\ a=7,\ b=5,\ c=6

    Semiperemeter of ABC=s=a+b+c2\triangle ABC=s=\dfrac{a+b+c}{2}

                                                         =7+5+62=\dfrac{7+5+6}{2}

                                                          =9=9 
     
    Hence, the area of ABC=9×(97)×(95)×(96)\triangle ABC=\sqrt{9\times (9-7)\times (9-5)\times (9-6)} 

                                                  =9×3×2×4=\sqrt{9\times 3\times 2\times 4}           

                                                  =66 cm2={6\sqrt{6}\ cm^{2}}
  • Question 9
    1 / -0
    Find the area of the parallelogram with sides 11cm11 cm and 13cm13 cm and one of the diagonals as 16cm.16 cm.
    Solution

    ar \parallel gm ABCD = 2×arABC2\times ar\triangle ABC
    ar \triangle ABC = s(sa)(sb)(sc) ,s=a+b+c2=16+13+112=20cm\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 16+13+11 }{ 2 } =20cm
    \therefore ar \triangle ABC = 20(2016)(2013)(2011) =20×4×7×9=5×4×4×7×9=4×335=1235cm2\sqrt { 20\left( 20-16 \right) \left( 20-13 \right) \left( 20-11 \right)  } =\sqrt { 20\times 4\times 7\times 9 } =\sqrt { 5\times 4\times 4\times 7\times 9 } =4\times 3\sqrt { 35 } =12\sqrt { 35 } { cm }^{ 2 }
    \therefore ar \triangle ABCD = 2×1235=2435cm22\times 12\sqrt { 35 } =24\sqrt { 35 } { cm }^{ 2 }

  • Question 10
    1 / -0
    Find the area of the quadrilateral whose sides are 9m,40m,28m,15m9 m ,40 m, 28 m, 15 m. The angle between first two sides is 90o90^o.
    Solution

    Area of quadrilateral ABCDABCD = ar [ABC][\triangle ABC] + ar [ACD][\triangle ACD]
    In ABC\triangle ABC :
      ar [ABC]=12×BC×AB=12×40m×9m=180m2ar\ [\triangle ABC] = \dfrac { 1 }{ 2 } \times BC\times AB\\=\dfrac { 1 }{ 2 } \times 40m\times 9m=180{ m }^{ 2 }

    Using pythagoras theorem,
     AC=AB2+BC2=(9) 2+(40) 2=1681=41mAC= \sqrt { { AB }^{ 2 }+{ BC }^{ 2 } } \\ =\sqrt { { \left( 9 \right)  }^{ 2 }+{ \left( 40 \right)  }^{ 2 } }\\ =\sqrt { 1681 } =41m

    Using Heron's formula,
    ar[ACD]=s(sa)(sb)(sc) s=a+b+c2   =41+28+152   =842=42mar [\triangle ACD] = \sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } \\\quad s=\dfrac { a+b+c }{ 2 } \\\ \ \ \quad =\dfrac { 41+28+15 }{ 2 } \\\quad \ \ \ =\dfrac { 84 }{ 2 } =42m

    ar[ACD]=42(4241)(4228)(4215)    =42×1×14×27=126m2 ar [\triangle ACD ]= \sqrt { 42\left( 42-41 \right) \left( 42-28 \right) \left( 42-15 \right)  }\\ \quad \quad \quad \ \ \ \quad =\sqrt { 42\times 1\times 14\times 27 } =126{ m }^{ 2 }
    Therefore, area of quadrilateral ABCDABCD 
    =180+126=180 + 126
    $$=306\  m^{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now