Self Studies

Herons Formula Test - 29

Result Self Studies

Herons Formula Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sides of triangle are 4, 5 and 6 cm. Then the area (in sq cm) of triangle is 
    Solution
    Given, triangle of sides a,b,c=4,5,6cma,b,c=4,5,6cm
    S=a+b+c2\therefore S=\dfrac{a+b+c}{2}

    =4+5+62=152=\dfrac{4+5+6}{2}=\dfrac{15}{2}
    Then, area of triangle
    A=S(Sa)(Sb)(Sc)A=\sqrt{S(S-a)(S-b)(S-c)}

    =152(1524)(1525)(1526)=\sqrt{\dfrac{15}{2}\left(\dfrac{15}{2}-4\right)\left(\dfrac{15}{2}-5\right)\left(\dfrac{15}{2}-6\right)}

    =152.(72)(52)(32)=\sqrt{\dfrac{15}{2}.\left(\dfrac{7}{2}\right)\left(\dfrac{5}{2}\right)\left(\dfrac{3}{2}\right)}
    =1547=\dfrac{15}{4}\sqrt{7}
  • Question 2
    1 / -0
    Find the area of equilateral triangle each of whose sides measures 20 cm.
    Solution
    Area of Equilateral Triangle =3b24\dfrac{\sqrt{3}{b^2}}{4}
    where b is the Side of the Triangle.
    Area=3×2024\dfrac{\sqrt{3}\times {20^2}}{4}
    Area=173.2cm2173.2{cm^2}
  • Question 3
    1 / -0
    Find the area of equilateral triangle (in cm2{cm^2})each of whose sides measure 18 cm.
    Solution
    Area of Equilateral Triangle =3a24\dfrac{\sqrt{3}{a^2}}{4}
    where aa is the Side of the Triangle.
    Given a=18 cma= 18\ cm

    Area =3×1824=\dfrac{\sqrt{3}\times {18^2}}{4}

    Area =140.29 cm2=140.29\ {cm^2}
  • Question 4
    1 / -0
    The area of an equilateral triangle is 43cm2.4 \sqrt{3} \,cm^2. The length of each of its sides is
    Solution
    From the question is given that,
    Area of an equilateral triangle is (43)(4 \sqrt{3})
    Area of the equilateral triangle =((3)/4)×(sides)2= ((\sqrt{3}) / 4) \times (sides)^2sq. units
    Area=((3/4)×(sides)2Area= ((\sqrt{3} / 4) \times (sides)^2
    =(sides)2=(43)/(4/(3)= (sides)^2 = (4 \sqrt{3}) / (4 / (\sqrt{3})
    =(sides)2=(43×4)/3= (sides)^2 = (4 \sqrt{3} \times 4) / \sqrt{3}
    =(sides)2=4×4= (sides)^2 = 4 \times 4
    =Sides=16 = Sides = \sqrt{} 16
    =Sides=4cm= Sides = 4 \,cm
    Hence, the length of each side of the triangle is 4cm4 \,cm
  • Question 5
    1 / -0
    The sides of a triangle measures 13cm,14cm13\,cm , 14\,cm and 15cm.15\,cm. Its area is
    Solution

    Let a,b,ca, b, c be the sides of the triangle

    Then, s=a+b+c2s =\dfrac{a + b + c}{2}


                 =13+14+152= \dfrac{13 + 14 + 15}{2}


                 =422= \dfrac{42}{2}


                 =21= 21


    Area of triangle =s(sa)×(sb)×(sc)= \sqrt{s (s - a) \times (s - b) \times (s - c)}


                               =(21×(2113)×(2114)×(2115)= \sqrt{(21 \times (21 - 13) \times (21 - 14) \times (21 - 15)}


                               =(21×(8)×(7)×(6)= \sqrt{(21 \times (8) \times (7) \times (6)}


                               =(3×7×2×2×2×7×2×3)= \sqrt{(3 \times 7 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3)}


                               =(32×72×22×22)= \sqrt{(3^2 \times 7^2 \times 2^2 \times 2^2)}

    By cancelling square and square root we get,
                               =(3×7×2×2)= (3 \times 7 \times 2 \times 2)
                               =84 cm2= 84\ cm^2
  • Question 6
    1 / -0
    Each side of an equilateral triangle is 8cm8 \,cm long. Its area is:
    Solution
    Area of the equilateral triangle =34×(sides)2= \dfrac{\sqrt 3}{ 4} \times (sides)^2

    =34×(8)2= \dfrac{\sqrt 3} {4} \times (8)^2

    =3 4×64= \dfrac{\sqrt 3}{  4} \times 64

    =3×16= \sqrt 3 \times 16

    =163cm2= 16 \sqrt 3 \,cm^2
  • Question 7
    1 / -0
    Find the area of ABD\triangle ABD

    Solution

  • Question 8
    1 / -0
    In an isosceles triangle PQRPQR, the altitude PS=6 PS = 6 cmcm and PQ=PR=10PQ = PR = 10 cmcm. Find the area of PSR\triangle PSR.

    Solution

  • Question 9
    1 / -0
    If AD=4AD = 4 cmcm and AB=5AB = 5 cmcm in the given figure, then find the area of ADB\triangle ADB.

    Solution

  • Question 10
    1 / -0
    In the given figure, if PL=2QLPL = 2 QL, then what will be the area of PLQ\triangle PLQ ?

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now