`
Self Studies

Herons Formula Test - 29

Result Self Studies

Herons Formula Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sides of triangle are 4, 5 and 6 cm. Then the area (in sq cm) of triangle is 
    Solution
    Given, triangle of sides $$a,b,c=4,5,6cm$$
    $$\therefore S=\dfrac{a+b+c}{2}$$

    $$=\dfrac{4+5+6}{2}=\dfrac{15}{2}$$
    Then, area of triangle
    $$A=\sqrt{S(S-a)(S-b)(S-c)}$$

    $$=\sqrt{\dfrac{15}{2}\left(\dfrac{15}{2}-4\right)\left(\dfrac{15}{2}-5\right)\left(\dfrac{15}{2}-6\right)}$$

    $$=\sqrt{\dfrac{15}{2}.\left(\dfrac{7}{2}\right)\left(\dfrac{5}{2}\right)\left(\dfrac{3}{2}\right)}$$
    $$=\dfrac{15}{4}\sqrt{7}$$
  • Question 2
    1 / -0
    Find the area of equilateral triangle each of whose sides measures 20 cm.
    Solution
    Area of Equilateral Triangle =$$\dfrac{\sqrt{3}{b^2}}{4}$$
    where b is the Side of the Triangle.
    Area=$$\dfrac{\sqrt{3}\times {20^2}}{4}$$
    Area=$$173.2{cm^2}$$
  • Question 3
    1 / -0
    Find the area of equilateral triangle (in $${cm^2}$$)each of whose sides measure 18 cm.
    Solution
    Area of Equilateral Triangle =$$\dfrac{\sqrt{3}{a^2}}{4}$$
    where $$a$$ is the Side of the Triangle.
    Given $$a= 18\ cm$$

    Area $$=\dfrac{\sqrt{3}\times {18^2}}{4}$$

    Area $$=140.29\ {cm^2}$$
  • Question 4
    1 / -0
    The area of an equilateral triangle is $$4 \sqrt{3} \,cm^2.$$ The length of each of its sides is
    Solution
    From the question is given that,
    Area of an equilateral triangle is $$(4 \sqrt{3})$$
    Area of the equilateral triangle $$= ((\sqrt{3}) / 4) \times (sides)^2$$sq. units
    $$Area= ((\sqrt{3} / 4) \times (sides)^2$$
    $$= (sides)^2 = (4 \sqrt{3}) / (4 / (\sqrt{3})$$
    $$= (sides)^2 = (4 \sqrt{3} \times 4) / \sqrt{3}$$
    $$= (sides)^2 = 4 \times 4$$
    $$ = Sides = \sqrt{} 16$$
    $$= Sides = 4 \,cm$$
    Hence, the length of each side of the triangle is $$4 \,cm$$
  • Question 5
    1 / -0
    The sides of a triangle measures $$13\,cm , 14\,cm$$ and $$15\,cm.$$ Its area is
    Solution

    Let $$a, b, c$$ be the sides of the triangle

    Then, $$s =\dfrac{a + b + c}{2}$$


                 $$= \dfrac{13 + 14 + 15}{2}$$


                 $$= \dfrac{42}{2}$$


                 $$= 21$$


    Area of triangle $$= \sqrt{s (s - a) \times (s - b) \times (s - c)}$$


                               $$= \sqrt{(21 \times (21 - 13) \times (21 - 14) \times (21 - 15)}$$


                               $$= \sqrt{(21 \times (8) \times (7) \times (6)}$$


                               $$= \sqrt{(3 \times 7 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3)}$$


                               $$= \sqrt{(3^2 \times 7^2 \times 2^2 \times 2^2)}$$

    By cancelling square and square root we get,
                               $$= (3 \times 7 \times 2 \times 2)$$
                               $$= 84\ cm^2$$
  • Question 6
    1 / -0
    Each side of an equilateral triangle is $$8 \,cm$$ long. Its area is:
    Solution
    Area of the equilateral triangle $$= \dfrac{\sqrt 3}{ 4} \times (sides)^2 $$

    $$= \dfrac{\sqrt 3} {4} \times (8)^2$$

    $$= \dfrac{\sqrt 3}{  4} \times 64$$

    $$= \sqrt 3 \times 16$$

    $$= 16 \sqrt 3 \,cm^2$$
  • Question 7
    1 / -0
    Find the area of $$\triangle ABD$$

    Solution

  • Question 8
    1 / -0
    In an isosceles triangle $$PQR$$, the altitude $$ PS = 6 $$ $$cm$$ and $$PQ = PR = 10$$ $$cm$$. Find the area of $$\triangle PSR$$.

    Solution

  • Question 9
    1 / -0
    If $$AD = 4$$ $$cm$$ and $$AB = 5$$ $$cm$$ in the given figure, then find the area of $$\triangle ADB$$.

    Solution

  • Question 10
    1 / -0
    In the given figure, if $$PL = 2 QL$$, then what will be the area of $$\triangle PLQ $$?

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now