Self Studies

Triangles Test - 30

Result Self Studies

Triangles Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$Q$$ is a point on side RS of $$\Delta PSR$$ such that $$PQ =PR$$ then which of the following is correct:
    Solution
    In $$\Delta PQR$$, 
    side $$PQ =$$ side $$PR$$     ....given
    $$\angle PQR = \angle PRQ$$                   ....isosceles triangle theorem
    Now, $$\angle PQS + \angle PQR = 180^o$$       ....angles in linear pair
    Since, $$\angle PQR$$ is an acute angle, $$\angle PQS$$ is obtuse.
    i.e.$$m \angle PQS > 90^o$$
    Now in $$\Delta PQS$$, 
    $$m \angle PQS > m \angle PSQ$$
    $$\therefore PS > PQ$$
    $$\therefore PS > PR$$               ...($$\because PQ=PR$$)

  • Question 2
    1 / -0
    If $$AB = 1$$, then radius of the inscribed circle

    is:




  • Question 3
    1 / -0
    $$\Delta ABC$$ is congruent of $$\Delta DEF$$, if
    Solution
    We say that triangle $$\triangle ABC$$ is congruent to $$\triangle DEF$$ if - 
    1. AB = DF
    2. BC = EF
    3. CA = FD
    4. $$\angle A = \angle D $$
    5. $$\angle B = \angle E $$
    6. $$\angle C = \angle F $$
    For this equation all options satisfies the above conditions.
    Therefore for this question, $$\triangle ABC$$ is congruent of $$\triangle DEF$$ if all the options are correct.
  • Question 4
    1 / -0
    If length of the largest side of a triangle is 12 cm then other two sides of triangle can be 
    Solution
    Sum of any two sides of a triangle is greater than the third side.
    Here the sum must be greater than $$12\ \ cm$$
    In option $$A$$
    $$4.8\ \ cm+8.2\ \ cm=13\ \ cm$$
    $$\Rightarrow 13\ \ cm>12 \ \ cm$$
    In rest of the options sum is less than $$12\ \ cm$$
    So option $$A$$ is correct. 
  • Question 5
    1 / -0
    In the figure given above, $$AP$$ $$\perp l$$ i.e., $$AP$$ is the shortest line segment that can be drawn from $$A$$ to the line $$l$$. If $$PR > PQ$$, which of the following is true.

    Solution
    Cut off $$PS$$ $$=$$ $$PQ$$ from $$PR$$ join $$AS$$
    In $$\Delta APQ$$ and $$\Delta APS$$
    $$\angle APQ = \angle APS$$   (each $$90^{\circ}$$)
    $$AP$$ $$=$$ $$AP$$ .... (common side)
    $$PQ$$ $$=$$ $$PS$$
    $$\therefore  \Delta APQ \cong \Delta APS$$
    $$AP$$ $$=$$ $$AS$$ and $$\angle 1 = \angle 3$$                   ....(1)
    In $$\Delta ARS$$, $$\angle 3 > \angle 2$$                 ....(2)
    [exterior angle property]
    from (1) and (2)
    $$\angle 1 > \angle 2$$
    from $$\Delta AQR$$, $$\angle 1 > \angle 2$$
    $$\therefore AR > QR$$
    $$\therefore AR > AQ$$
  • Question 6
    1 / -0
    If $$E$$ is a point on side $$QR$$ of $$\Delta PQR$$ such that $$PE$$ bisects $$\angle QPR$$, then :
    Solution
    According to the given condition $$\angle QPE = \angle RPE$$
    And from external angle theorem, 
    $$\angle PEQ= \angle RPE + \angle PRE $$
    $$\Rightarrow \angle PEQ = \angle QPE + \angle PRE$$
    $$\Rightarrow \angle PEQ > \angle QPE $$
    In triangle, side opposite angle is greater 
    $$\Rightarrow QP > QE$$

  • Question 7
    1 / -0
    In triangle $$ ABC$$, $$\angle B=30^{o}$$ and $$\angle$$ C$$=70^{o}$$. The greatest side of the triangle is
    Solution
    Since sum of angles in a triangle $$ = {180}^{o} $$
    $$ \angle A = {180}^{o} - {30}^{o} - {70}^{o} = {80}^{o} $$
    Out of the three angles, $$ \angle A $$ is the largest.
    This means, the side opposite to it, which is BC will be the greatest side of the triangle.
  • Question 8
    1 / -0
    If $$AB = 7$$ cm, $$BP = 4$$ cm, $$AP = 5.4$$ cm, then compare the segments.
    Solution
    $$AB=7cm$$, $$BP=4cm$$ and $$AP=5.4cm$$. Therefore $$AB>AP>BP$$.
  • Question 9
    1 / -0
    In the following figure; $$ AC= CD $$, $$ AD= BD $$ and $$ \angle C= 58^{\circ} $$. Find angle $$ CAB $$.

    Solution
    In $$\triangle ACD$$,

    by isosceles triangle property, angles opposite to equal sides are equal.

    Then, let $$\angle CAD = \angle CDA = x$$.


    We know, by angle sum property, the sum of angles $$= 180^o$$.
    $$\angle CAD + \angle CDA + \angle ACD = 180^o$$
    $$\implies$$ $$x + x + \angle ACD = 180^o$$
    $$\implies$$ $$2x + 58^o = 180^o$$ ......(as $$\angle C=\angle ACD=58^o$$)
    $$\implies$$ $$2x = 122^o$$
    $$\implies$$ $$x = 61^{\circ}$$.
    Therefore, $$\angle CAD = \angle CDA = 61^{\circ}$$.

    Now, in $$\triangle ADB$$,
    $$AD = BD$$ (Given)
    $$\angle DAB = \angle ABD = y$$ ......(Isosceles triangle property).
    Also, $$\angle CDA = \angle DBA + \angle DAB$$ ......(Exterior angle property)
    $$\implies$$ $$61^o = y + y$$
    $$\implies$$ $$2y = 61^o$$
    $$\implies$$ $$y = 30.5^0$$

    Then, $$\angle CAB = \angle CAD + \angle DAB$$
    $$\implies$$ $$\angle CAB = 61^o + 30.5^o$$
    $$\implies$$ $$\angle CAB = 91.5^{\circ}$$.

    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    In the figure $$\angle  ABC=135^{\circ},\angle ABX=90^{\circ} ,\angle XCD=55^{\circ}, \angle BCD=100^{\circ}$$,then determine whether $$\angle XBC$$ and $$\angle XCB$$ are congruent to each other.

    Solution
    Given,
    $$
    \angle ABC={ 135 }^{ o },\quad ABX={ 90 }^{ o },\quad XCD={ 55 }^{ o },\quad BCD={ 100 }^{ o }$$.
     Here, $$\angle ABC=\angle ABX+\angle XBC\Rightarrow XBC=\angle ABC-ABX={ 135 }^{ o }-{ 90 }^{ o }\Rightarrow XBC=45^o.$$
    Again $$ \angle BCD=\angle XCB+\angle XCD\Rightarrow \angle  XCB=\angle BCD-\angle XCD\Rightarrow \angle XCB={ 100 }^{ o }-{ 55 }^{ o }$$ $$=45^o$$.

    Since, $$\angle XBC=\angle XCB=45^o$$, they are congruent.

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now