Self Studies

Triangles Test - 36

Result Self Studies

Triangles Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the figure given below, $$\displaystyle \Delta ABC\cong \Delta MBC.$$ The corresponding side to $$BA$$ is ......

    Solution

    Given $$\triangle ABC \cong \triangle MBC$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=MB$$,  $$BC=BC$$, $$AC=MC$$, $$\angle A=\angle M$$, $$\angle B=\angle B$$ and $$\angle C=\angle C$$.

    Thus, $$AB=MB$$ $$\implies$$ $$BA=BM$$.

    Hence, option $$A$$ is correct.

  • Question 2
    1 / -0
    In the figure given below, $$\displaystyle \Delta ABC\cong \Delta XYZ$$. The corresponding side to $$XZ$$ is .......

    Solution

    Given $$\triangle ABC \cong \triangle XYZ$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=XY$$,  $$BC=YZ$$, $$AC=XZ$$, $$\angle A=\angle X$$, $$\angle B=\angle Y$$ and $$\angle C=\angle Z$$.

    Thus, $$AC=XZ$$.

    Hence, option $$C$$ is correct.

  • Question 3
    1 / -0
    In the triangles $$ABC$$ and $$PQR,$$ $$AC=QP, BC=RP$$ and $$AB=QR.$$ The measure of $$\angle A$$ is ___.

    Solution
    Given: In $$\triangle ABC$$ and $$\triangle PQR,$$

    $$\angle C=120^\circ$$ and $$\angle R=40^\circ$$ 

    Now, $$AC=QP$$               ...(1)

    and $$ BC=RP$$                ...(2)

    and $$AB=QR$$                 ...(3)

    Hence $$ABC \cong PQR$$ $$($$by $$SSS$$ congruency rule$$)$$


    By CPCT, $$ \angle B=\angle R=40^\circ$$

    and $$ \angle C=\angle P={ 120 }^{ \circ }$$

    and $$ \angle A=\angle Q$$

    Now, $$\displaystyle \angle A+\angle B+\angle C={ 180 }^{ o }$$

    $$\displaystyle \Rightarrow   \angle A+{ 40 }^{ \circ }+{ 120 }^{ \circ }={ 180 }^{ \circ }$$

    $$\displaystyle \Rightarrow  \angle A={ 20 }^{ \circ}$$
  • Question 4
    1 / -0
    In the figure given below, $$\displaystyle \Delta BCA\cong \Delta BCD$$. Corresponding angle to $$\displaystyle \angle D$$ is ...........

    Solution

    Given $$\triangle BCA \cong \triangle BCD$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$BC=BC$$,  $$CA=CD$$, $$BA=BD$$, $$\angle B=\angle B$$, $$\angle C=\angle C$$ and $$\angle A=\angle D$$.

    Thus, $$\angle A=\angle D$$.

    Hence, option $$D$$ is correct.
  • Question 5
    1 / -0
    In the figure given below, both the triangles are congruent. The corresponding side to $$BC$$ is .......

    Solution

    Given $$\triangle ABC \cong \triangle DEF$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=DE$$,  $$BC=EF$$, $$AC=DF$$, $$\angle A=\angle D$$, $$\angle B=\angle E$$ and $$\angle C=\angle F$$.

    Thus, $$BC=EF$$.

    Hence, option $$A$$ is correct.
  • Question 6
    1 / -0
    Which condition for congruence is used to prove that the following pairs of triangles are congruent

    Solution
    In the given $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, 
    we can clearly see that sides $$AB = DE, BC = EF$$ and $$AC = DF.$$ 
    Thus, by $$SSS$$ condition of congruence, the given $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$ are congruent.
  • Question 7
    1 / -0
    In the figure given below, both the triangles are congruent. The corresponding side to $$AB$$ is ___.

    Solution

    Given $$\triangle ABC \cong \triangle DEF$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=DE$$, 

     $$BC=EF$$, 

    $$AC=DF$$, 

    $$\angle A=\angle D$$, 

    $$\angle B=\angle E$$ 

    $$\angle C=\angle F$$.

    Thus, $$AB=DE$$.

    Hence, option $$B$$ is correct.

  • Question 8
    1 / -0
    It is given that $$\Delta ABC\cong \Delta DEF$$. In the given figure the corresponding angle to $$\displaystyle \angle B$$ is___.

    Solution

    Given $$\triangle ABC \cong \triangle DEF$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=DE$$,  $$BC=EF$$, $$AC=DF$$, $$\angle A=\angle D$$, $$\angle B=\angle E$$ and $$\angle C=\angle F$$.

    Thus, $$\angle B=\angle E$$.
    Hence, option $$C$$ is correct.
  • Question 9
    1 / -0
    It is given that $$\Delta ABC\cong \Delta DEF$$. In the given figure the corresponding angle to $$\displaystyle \angle C$$ is ........

    Solution

    Given $$\triangle ABC \cong \triangle DEF$$.

    Then the corresponding parts will also be equal.

    That is by CPCT rule, corresponding parts of congruent triangles are equal.

    Then, $$AB=DE$$,  $$BC=EF$$, $$AC=DF$$, $$\angle A=\angle D$$, $$\angle B=\angle E$$ and $$\angle C=\angle F$$.

    Thus, $$\angle C=\angle F$$.

    Hence, option $$C$$ is correct
  • Question 10
    1 / -0
    Referring the figure below, for $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, $$ AB=DE, BC=EF$$ and 
    $$\displaystyle \angle B=\angle E.$$ The value of $$\displaystyle \angle E$$ is .........

    Solution
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$
    $$\displaystyle AB=DE,BC=EF$$ and $$\displaystyle \angle B=\angle E$$
    $$\displaystyle \therefore \quad \Delta ABC\cong \Delta DEF$$ (S.A.S condition for congruence)
    As, $$\displaystyle AB=DE\Rightarrow \angle C=\angle F={ 60 }^{ o }$$
    $$\displaystyle BC=EF\Rightarrow \angle A=\angle D={ 60 }^{ o }$$
    $$\displaystyle AC=DF\Rightarrow \angle B=\angle E$$
    Now, $$\displaystyle \angle D+\angle E+\angle F={ 180 }^{ o }$$
    $$\displaystyle \therefore \quad { 120 }^{ o }+\angle E={ 180 }^{ o }$$
    $$\displaystyle \therefore \quad \angle E={ 60 }^{ o }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now