Self Studies

Triangles Test - 37

Result Self Studies

Triangles Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a rectangle $$PQRS$$, $$QS$$ is a diagonal. Then $$\displaystyle \Delta PQS......\Delta RSQ$$
    Solution
    In a rectangle $$PQRS$$, $$QS$$ is a diagonal.
    We know that , in a rectangle opposite sides are equal.
    $$\displaystyle \therefore  PQ=SR$$
    Also, $$\displaystyle \angle R=\angle P={ 90 }^{ o }$$
    Ans $$QS$$ is the hypotenuse for both right angled triangles $$PQS$$ and $$RSQ$$.
    $$\displaystyle \therefore $$ according to R.H.S condition for congruence, $$\displaystyle \Delta PQS\cong \Delta RSQ$$.
  • Question 2
    1 / -0
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF,\angle A={ 47 }^{ o },\angle E={ 53 }^{ o }$$ and $$\displaystyle AB=DE=16 \ cm\\ $$. $$\displaystyle \angle A=\angle D$$ and $$\displaystyle \angle B=\angle E$$, then $$\displaystyle \angle C= $$..............
    Solution
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$
    $$\displaystyle \angle A=\angle D,\angle B=\angle E$$ and $$\displaystyle AB=DE$$
    $$\displaystyle \therefore $$ According to A.S.A condition for congruence, 
    $$\displaystyle \Delta ABC\cong \Delta DEF$$
    $$\displaystyle \angle A=\angle D={ 47 }^{ o }$$
    $$\displaystyle \angle B=\angle E={ 53 }^{ o }$$
    $$\displaystyle \angle C=\angle F$$
    $$\displaystyle \therefore \quad \angle D+\angle E+\angle F=\angle A+\angle B+\angle C={ 180 }^{ o }\\ $$
    $$\displaystyle \therefore \quad \angle C={ 180 }^{ o }-{ 100 }^{ o }$$
    $$\displaystyle \therefore \quad \angle C={ 80 }^{ o }$$

  • Question 3
    1 / -0
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta PQR$$, $$AB=PQ, AC=PR,$$ and $$\displaystyle \angle A=\angle P,$$ then:
  • Question 4
    1 / -0
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, $$\displaystyle \angle B=\angle D,\angle C=\angle F$$ and $$BC=DF$$. Therefore which of the following is correct?
    Solution
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, we have
    $$\displaystyle \angle B=\angle D,\angle C=\angle F$$ .....Given
    $$BC=DF$$  .....Given
    Therefore, according to A.S.A condition for congruence, 
    $$\displaystyle \Delta BCA\cong \Delta DFE$$
    Hence, option B is correct.

  • Question 5
    1 / -0
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF,$$ $$AB=FE, BC=ED$$ and $$\displaystyle \angle B=\angle E$$. Therefore ............
    Solution
    For, $$\displaystyle \Delta BCA$$ and $$\displaystyle \Delta EDF,$$
    $$\displaystyle AB=FE\quad \therefore \angle C=\angle D$$
    $$\displaystyle BC=ED\quad \therefore \angle A=\angle F$$
    $$\displaystyle \angle B=\angle E$$
    $$\displaystyle \Delta BCA\cong \Delta DEF$$
    (By $$SAS$$ condition for congruence).
  • Question 6
    1 / -0
    Referring the figure given below, for $$\displaystyle \Delta PQR$$ and $$\displaystyle \Delta XYZ$$, $$PQ=YZ, QR=XZ$$ and $$\displaystyle \angle Q=\angle Z$$. The value of $$\displaystyle \angle P$$ is ___.

    Solution
    In $$\displaystyle \Delta PQR$$ and $$\displaystyle \Delta XYZ,$$

    $$\displaystyle PQ=YZ$$

    $$\displaystyle QR=XZ$$

    $$\displaystyle \angle Q=\angle Z$$

    $$\displaystyle \therefore \Delta PQR\cong \Delta XYZ$$          ($$S.A.S.$$ condition for congruence)

    $$\displaystyle \therefore  \angle R=\angle X={ 63 }^{ \circ }$$

    $$\displaystyle \Rightarrow \angle P=\angle Y$$

    $$\displaystyle \Rightarrow \angle Q=\angle Z={ 75 }^{ \circ }$$

    Now, $$\displaystyle \angle P+\angle Q+\angle R={ 180 }^{ \circ }$$

    $$\displaystyle \therefore  \angle P+{ 75 }^{ \circ }+{ 63 }^{ \circ }={ 180 }^{ \circ }$$

    $$\displaystyle \Rightarrow  \angle P={ 42 }^{ \circ }$$
  • Question 7
    1 / -0
    In a $$\triangle ABC$$, $$D$$ is the midpoint of the side $$BC. DE$$ is perpendicular to $$AB$$ and $$DF$$ is perpendicular to $$AC$$. Also, $$DE=DF$$, Then $$\displaystyle \angle B$$ =
    Solution
    Given: $$D$$ is the midpoint of $$BC$$

    $$\displaystyle \therefore \quad BD=DC$$

    Also, $$DE = DF$$

    $$DE$$ is perpendicular to $$AB$$ 

    $$\displaystyle \therefore  \angle E={ 90 }^{ o }$$

    $$DF$$ is perpendicular to $$AC$$ 

    $$\displaystyle \therefore  \angle F={ 90 }^{ o }$$

    If we consider two triangles so formed, $$\displaystyle \Delta DEB$$ and $$\displaystyle \Delta CFD$$, then their hypotenuse $$BD$$ and $$CD$$ are equal. 

    $$\displaystyle \angle E=\angle F={ 90 }^{ o }$$. Also $$DE=CF$$. 

    Thus according to R.H.S condition of congruence $$\displaystyle \Delta DEB\cong \Delta CFD$$

    Thus, the corresponding angles $$\displaystyle \angle B$$ and $$ \angle C$$ are equal, i.e $$\displaystyle \angle B=\angle C$$

  • Question 8
    1 / -0
    In the given figures, which of the following satisfies A.S.A. condition for congruence?

    Solution
    Figure 1 satisfy the condition of A.S.A
    Here $$\angle ACB=\angle DCE$$ {vertical angle|
    $$DC=BC$$ and $$\angle EDC=\angle ABC$$ [Alternate angles]
    $$\therefore$$ It satisfy A.S.A Congruency.
  • Question 9
    1 / -0
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, $$\displaystyle \angle B=\angle D={ 90 }^{ o }$$, $$\displaystyle AC=EF$$ and $$\displaystyle AB=ED$$. Then $$\displaystyle \Delta ABC\cong $$..........
    Solution
    For $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DEF$$, 
    $$\displaystyle \angle B=\angle D={ 90 }^{ o }$$, $$\displaystyle AC=EF$$ and $$\displaystyle AB=ED$$
    $$\displaystyle \therefore $$ According to R.H.S condition for congruence, both triangles are 
    $$\displaystyle \therefore \Delta ABC\cong \Delta EDF$$
  • Question 10
    1 / -0
    For $$\displaystyle \Delta ABC \cong \displaystyle \Delta DEF$$. Then according to the given figure,$$\angle D = 40^o$$, $$\displaystyle \angle C=$$.....

    Solution
    According to the given figure,
    $$\displaystyle \angle B=\angle E={ 90 }^{ o }$$
    $$\Rightarrow AC=DE=5 $$ cm (hypotenuse) and $$BC=EF=2 $$ cm
    $$\displaystyle \therefore \Delta ABC\cong \Delta DEF$$ ..... (R.H.S condition for congruence)
    $$\displaystyle \Rightarrow \angle A=\angle D={ 40 }^{ o }$$
    $$\displaystyle \Rightarrow \angle B={ 90 }^{ o }$$
    $$\displaystyle   \angle C=?$$
    We know $$\displaystyle \angle A+\angle B+\angle C={ 180 }^{ o }$$
    $$\displaystyle \therefore  \angle C={ 180 }^{ o }-{ 90 }^{ o }-{ 40 }^{ o }$$
    $$\displaystyle \therefore  \angle C={ 50 }^{ o }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now