Case 1: for 5 digit numbers Ten Tens thousands place can be occupied in 4 ways since 0 cannot be suitable. For ones place remaining 4 numbers ( since repetition is not allowed ) can be occupied in 4 ways : and the tens place in 3 ways and hundreds place in 2 ways and the thousands place in 1 way. Hence the total number of ways is 4x1x4x2x3= 96.

Case 2: for 4 digit numbers thousands place can be occupied in 4 ways since 0 cannot be suitable. For ones place remaining 4 numbers ( since repetition is not allowed ) can be occupied in 4 ways : and the tens place in 3 ways and hundreds place in 2 ways . Hence the total number of ways is 4x4x2x3= 96.

Case 3: for 3digit numbers hundreds place can be occupied in 4 ways since 0 cannot be suitable. For ones place remaining 4 numbers ( since repetition is not allowed ) can be occupied in 4 ways : and the tens place in 3 ways Hence the total number of ways is 4x4x3= 48
Case 4: for 2 digit numbers Tens place can be occupied in 4 ways since 0 cannot be suitable. For ones place remaining 4 numbers ( since repetition is not allowed ) can be occupied. Hence the total number of ways is 4x4=16.
Case 5: For single digit in 4 ways .
Hence 96 + 96 + 48+ 16+4 = 260