Self Studies

Mathematics Test - 11

Result Self Studies

Mathematics Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the area of the region bounded by the parabola \(x^2=4 y, y=2\) and \(y=4\) and the \(y\)-axis in the first quadrant.

    Solution

    Given curve is \(x^2=4 y\) \(\Rightarrow x=2 \sqrt{y}\)

     

    Area of ABCD \(=\int_2^4 x d y\)

     

    \(=\int_2^4 2 \sqrt{y}~ d y \)

    \(=\frac{32-8 \sqrt{2}}{3} \) sq. unit 

  • Question 2
    1 / -0

    Solve: |x – 1| ≤ 5, |x| ≥ 2

    Solution

    Given:

    |x – 1| ≤ 5, |x| ≥ 2

    ⇒ (-5 ≤ (x – 1) ≤ 5), (x ≤ -2 or x ≥ 2)

    ⇒ (-4 ≤ x ≤ 6), (x ≤ -2 or x ≥ 2)

    Now, required solution is:

    x ∈ [-4, -2] ∪ [2, 6]

  • Question 3
    1 / -0

    Find \(\lim _{\mathrm{x} \rightarrow 1} \frac{\sqrt{\mathrm{f}(\mathrm{x})}-1}{\mathrm{x}-1}\), if \(\mathrm{f}(1)=1\) and \(\mathrm{f^\prime}(1)=3\).

    Solution

    The given limit:

    \(\lim _{\mathrm{x} \rightarrow 1} \frac{\sqrt{\mathrm{f}(\mathrm{x})}-1}{\mathrm{x}-1}\)

    \(\Rightarrow \frac{\sqrt{\mathrm{f}(1)}-1}{1-1}\)

    \(\Rightarrow \frac{1-1}{1-1}\)

    \(\Rightarrow \frac{0}{0}\), is an indeterminate form.

    From L'Hospital's rule, we know that:

    \(\lim _{\mathrm{x} \rightarrow \mathrm{c}} \frac{\mathrm{f(x)}}{\mathrm{g(x)}}=\lim _{\mathrm{x} \rightarrow \mathrm{c}} \frac{\mathrm{f^{\prime}(x)}}{\mathrm{g^{\prime}(x)}}\)

    Using the L'Hospital's rule, we get:

    \(\lim _{\mathrm{x} \rightarrow 1} \frac{\sqrt{\mathrm{f}(\mathrm{x})}-1}{\mathrm{x}-1}\)

    \(= \lim _{\mathrm{x} \rightarrow 1} \frac{\frac{1}{2 \sqrt{\mathrm{f}(\mathrm{x})}} \mathrm{f}^{\prime}(\mathrm{x})-0}{1-0}\)

    \(= \frac{\mathrm{f}^{\prime}(1)}{2 \sqrt{\mathrm{f}(1)}}\)

    \(= \frac{3}{2}\)

  • Question 4
    1 / -0

    Let \(Z\) be the set of integers. If \(A=\left\{x \in Z: 2^{(x+2)\left(x^{2}-5 x+6\right)}=1\right\}\) and \(B=\{x \in Z:-3<2 x-1<9\},\) then the number of subsets of the set \(A \times B,\) is.

    Solution

    Given, set \(\mathrm{A}=\left\{\mathrm{x} \in \mathrm{Z}: 2^{\mathrm{x}+2\left(\mathrm{x}^{2}-5 \mathrm{x}+6\right)}=1\right\}\)

    Consider, \(2^{(x+2)\left(x^{2}-5 x+6\right)}=1=2^{\circ}\)

    \(\Rightarrow(x+2)(x-3)(x-2)=0\)

    \(\Rightarrow x=(-2,2,3)\)

    \(\Rightarrow A=\{-2,2,3\}\)

    Also, we have set \(B=\{x \in Z:-3<2 x-1<9\}\)

    Consider, \(-3<2 x-1<9, x \in Z\)

    \(\Rightarrow-2<2 x<10, x \in Z\)

    \(\Rightarrow-1

    \(\Rightarrow B=\{0,1,2,3,4\}\)

    So, \(A \times B\) has 15 elements.

    \(\therefore\) Number of subsets of \(A \times B=2^{15}\)

    \(\left[\because\right.\) If \(n a=m\), the number of possible subsets \(\left.=2^{m}\right]\)

  • Question 5
    1 / -0

    Find the number of terms in \((\sqrt{3}+1)^{8}\):

    Solution

    We know, the total number of terms in the expansion of \((x+y)^{n}\) are \((n+1)\)

    \(\ln (\sqrt{3}+1)^{8}, \mathrm{n}=8\)

    \(\therefore\) Number of terms \(=8+1=9\)

  • Question 6
    1 / -0
    A line makes an angle \(\alpha, \beta, \gamma\) with the \(x, y\), and \(z\) axes. Then \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\) is:
    Solution

    Given,

    \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\)

    We know that,

    Sum of squares of the direction cosines of a line is equal to unity.

    So,

    \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \)

    \(\Rightarrow 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=1\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)\)

    \(\Rightarrow 3-\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)=1\)

    \(\Rightarrow 3-1=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\)

    \(\therefore \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2\)

  • Question 7
    1 / -0

    What is the equation of the ellipse having foci \((\pm 2,0)\) and the eccentricity \(\frac{1 }{ 2}\)?

    Solution

    As we know,

    Equation of ellipse \(=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

    Foci \(=(\pm a e, 0)\)

    Eccentricity \((e)=\sqrt{1-\frac{ b ^{2}}{ a ^{2}}}\)

    Here, foci \(=(\pm 2,0)=(\pm a e, 0)\) and the eccentricity, \(e=\frac{1 }{ 2}\)

    \(ae =2\)

    \(\Rightarrow a \times \frac{1 }{ 2}=2 \)

    \(\Rightarrow a =4 \)

    \(\Rightarrow a ^{2}=16\)

    Now, \(e=\sqrt{1-\frac{b^{2}}{a^{2}}}\)

    \(\Rightarrow b^{2}=a^{2}\left(1-e^{2}\right)\)

    \(\Rightarrow b^{2}=16(1-\frac{1 }{ 4}) \)

    \(\Rightarrow b^{2}=16 \times(\frac{3 }{ 4}) \)

    \(\Rightarrow b^{2}=12\)

    \(\therefore\) Equation of ellipse is \(\frac{ x ^{2}}{16}+\frac{ y ^{2}}{12}=1\)

  • Question 8
    1 / -0

    What is the value of (A - B) ∩ (B - A)?

    Solution

    The difference between the two Sets:

    Let A and B be two sets. The difference between A and B is denoted as (A - B)

    It is the set of all those elements of A which are not present in B i.e {x: x ∈ A and x ∉ B}

    The Venn diagram representation of the difference between two sets is shown below

    \(A-B=\) It is the set having all the elements of set \(A\) except the elements present in set B.

    \(B-A=\) It is the set having all the elements of set \(B\) except the elements present in set A.

    \(\therefore(A-B) \cap(B-A)\) is a null set \((\phi)\).

  • Question 9
    1 / -0

    If \(A=\left[\begin{array}{ccc}2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5\end{array}\right]\) is a symmetric matrix then \(x\):

    Solution
    As we know,
    Square matrix \(A\) is said to be symmetric if the transpose of matrix \(A\) is equal to matrix \(A\) itself.
    \(\therefore A^T=A\) or \(A'=A\) [where \(A^T\) or \(A'\) denotes the transpose of matrix]
    Square matrix \(A\) is said to be symmetric if \(a_{ij}=a_{ji}\) where \(a_{ij}\) and \(a_{ji}\) is an element present in matrix.
    Given,
    \(A\) is a symmetric matrix.
    \(\Rightarrow A^{T}=A\) or \(a_{i j}=a_{j i} \)
    \(\begin{aligned}A=\left[\begin{array}{ccc}
    2 & x-3 & x-2 \\
    3 & -2 & -1 \\
    4 & -1 & -5
    \end{array}\right]
    \end{aligned}\)
    So, by property of symmetric matrices, we get
    \( a _{12}= a _{21} \)
    \(\Rightarrow x -3=3 \)
    \(\Rightarrow x=3+3\)
    \(\therefore x =6\)
  • Question 10
    1 / -0

    The equation of the line passing through the point \((2,3)\) with slope \(2\) is

    Solution

    Given, the point \((2,3)\) and slope of the line is \(2\)

    By, slope-intercept formula,

    \(y-3=2(x-2)\)

    \(\Rightarrow y-3=2 x-4\)

    \(\Rightarrow 2 x-4-y+3=0\)

    \(\Rightarrow 2 x-y-1=0\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now