Given:
\(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\)
Put \(\mathrm{n}=1\) in the given expression
\(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n} \)
\(3+5+7=15\)
which is divisible by \(3,5,15\)
Put \(\mathrm{n}=2\)
\(3(32)+5(8)+14=150\)
which is divisible by \(3,5,10,15\)
Since, \(\mathrm{P}(1)\) and \(\mathrm{P}(2)\) both are divisible by \(3,5,15\).
Every number divisible by 15 is divisible by 3 and 5 also.
So, let us assume \(\mathrm{P}(\mathrm{n})=3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\) is divisible by 15.
\(3 n^{5}+5 n^{3}+7 n=15 \lambda\)
Now, we have to prove \(\mathrm{P}(\mathrm{n}+1)\) is true
Consider, \(\mathrm{P}(\mathrm{n}+1)=3(\mathrm{n}+1)^{5}+5(\mathrm{n}+1)^{3}+7(\mathrm{n}+1)\)
\(=3\left(\mathrm{n}^{5}+5 \mathrm{n}^{4}+10 \mathrm{n}^{3}+10 \mathrm{n}^{2}+5 \mathrm{n}+1\right)+5\left(\mathrm{n}^{3}+1+3 \mathrm{n}^{2}+3 \mathrm{n}\right)+7 \mathrm{n}+7 \)
\(=\left(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\right)+15 \mathrm{n}^{4}+30 \mathrm{n}^{3}+45 \mathrm{n}^{2}+30 \mathrm{n}+15 \)
\(=15 \lambda+15\left(\mathrm{n}^{4}+2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+2 \mathrm{n}+1\right) \)
\(=15\left(\lambda+\mathrm{n}^{4}+2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+2 \mathrm{n}+1\right)\) which is divisible by 15.
so, \(\mathrm{P}(\mathrm{n}+1)\) is divisible by 15.
By mathematical induction, given expression is divisible by 15 , for all \(\mathrm{n} \in \mathrm{N}\)