Self Studies

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the Area of the region (in square unit) bounded by the curve \(y=x-2\) and \(x=0\) to \(x=4\).

    Solution

    Concept:

    The area between the curves \(y_{1}=f(x)\) and \(y_{2}=g(x)\) is given by:

    Area enclosed \(=\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left|\mathrm{y}_{2}-\mathrm{y}_{1}\right| \mathrm{dx}\)

    Where \(x_{1}\) and \(x_{2}\) are the intersections of curves \(y_{1}\) and \(y_{2}\)

    Calculation:

    In figure \(\triangle \mathrm{ABC}\) and \(\triangle \mathrm{AOD}\) is similar

    So, Area of the region \(=2 \times(\) Area of \(\triangle \mathrm{ABC})\)

    For the area of \(\triangle \mathrm{ABC}\)

    \(=\int_{2}^{4}(x-2) d x\)

    \(=\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}\)

    \(=\frac{4^{2}}{2}-2(4)-\left(\frac{2^{2}}{2}-2 \times 2\right)\)

    \(=8-8-2+4\)

    \(=2\) sq. unit

    So, Area of the region \(=2 \times(\) Area of \(\triangle \mathrm{ABC})=2 \times 2=4\)sq. unit

  • Question 2
    1 / -0

    If \({}^{12} \mathrm{P}_r=1320\) then \(\mathrm{r}\) is:

    Solution

    We know:

    \({ }^{\mathrm{n}} \mathrm{P}_{{r}}=\frac{\mathrm{n} !}{(\mathrm{n}-{r}) !}\)

    \({ }^{12} \mathrm{P}_{{r}}=1320\)

    \(\frac{12 !}{(12-r) !}=1320\)

    \(\frac{12 !}{(12-r) !}=12 \times 11 \times 10\)

    \(\frac{12 !}{(12-\mathrm{r}) !}=12 \times 11 \times 10 \times \frac{9 !}{9 !}\)

    \(\frac{12 !}{(12-r) !}=\frac{12 !}{9 !}\)

    \(\frac{12 !}{(12-r) !}=\frac{12 !}{(12-3) !}\)

    \(\therefore {r}=3\)

  • Question 3
    1 / -0

    If \(\left|\begin{array}{ccc}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3},\) then \(A_{0}\) is equal to ______.

    Solution
    Given that, \(\left|\begin{array}{lll}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|\)\(=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}\)
    On putting \(\mathrm{x}=0\) on both sides, we get
    \(\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=A_{0}\)
    \(\Rightarrow A_{0}=0\)
  • Question 4
    1 / -0

    If \(\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}\) are three vectors such that \(\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}\) is perpendicular to \(\overrightarrow{\mathrm{c}},\) then find the value of \(\lambda ?\)

    Solution

    Given: \(\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}\)

    \(\Rightarrow \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})\)

    \(\Rightarrow \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}=(2+\lambda) \overrightarrow{\mathrm{i}}+(1+\lambda) \overrightarrow{\mathrm{j}}+(3-2 \lambda) \overrightarrow{\mathrm{k}}\)

    Now, \(\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}\) and \(\overrightarrow{\mathrm{c}}\) are perpendicular

    \(\Rightarrow(\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}=0\)

    \(\Rightarrow[(2+\lambda) \hat{\mathrm{i}}+(1+\lambda) \hat{\mathrm{j}}+(3-2 \lambda) \hat{\mathrm{k}}] \cdot(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})=0\)

    ⇒ 2(2 + λ) + 3(3 - 2λ) = 0

    ⇒ 4 + 2λ + 9 - 6λ = 0

    ⇒ 13 - 4λ = 0

    ⇒ λ = \(\frac{13}{4}\)

  • Question 5
    1 / -0

    \(\forall \mathrm{n} \in \mathrm{N} ; 3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\) is divisible by:

    Solution

    Given:

    \(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\)

    Put \(\mathrm{n}=1\) in the given expression

    \(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n} \)

    \(3+5+7=15\)

    which is divisible by \(3,5,15\)

    Put \(\mathrm{n}=2\)

    \(3(32)+5(8)+14=150\)

    which is divisible by \(3,5,10,15\)

    Since, \(\mathrm{P}(1)\) and \(\mathrm{P}(2)\) both are divisible by \(3,5,15\).

    Every number divisible by 15 is divisible by 3 and 5 also.

    So, let us assume \(\mathrm{P}(\mathrm{n})=3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\) is divisible by 15.

    \(3 n^{5}+5 n^{3}+7 n=15 \lambda\)

    Now, we have to prove \(\mathrm{P}(\mathrm{n}+1)\) is true

    Consider, \(\mathrm{P}(\mathrm{n}+1)=3(\mathrm{n}+1)^{5}+5(\mathrm{n}+1)^{3}+7(\mathrm{n}+1)\)

    \(=3\left(\mathrm{n}^{5}+5 \mathrm{n}^{4}+10 \mathrm{n}^{3}+10 \mathrm{n}^{2}+5 \mathrm{n}+1\right)+5\left(\mathrm{n}^{3}+1+3 \mathrm{n}^{2}+3 \mathrm{n}\right)+7 \mathrm{n}+7 \)

    \(=\left(3 \mathrm{n}^{5}+5 \mathrm{n}^{3}+7 \mathrm{n}\right)+15 \mathrm{n}^{4}+30 \mathrm{n}^{3}+45 \mathrm{n}^{2}+30 \mathrm{n}+15 \)

    \(=15 \lambda+15\left(\mathrm{n}^{4}+2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+2 \mathrm{n}+1\right) \)

    \(=15\left(\lambda+\mathrm{n}^{4}+2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+2 \mathrm{n}+1\right)\) which is divisible by 15.

    so, \(\mathrm{P}(\mathrm{n}+1)\) is divisible by 15.

    By mathematical induction, given expression is divisible by 15 , for all \(\mathrm{n} \in \mathrm{N}\)

  • Question 6
    1 / -0

    Find the length of latus rectum of hyperbola \(25 y^{2}-24 x^{2}=600\).

    Solution

    As we know,

    If Equation of hyperbola is \(\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1\), then

    Length of latus rectum \(=\frac{2 b^{2}}{a}\)

    If Equation of hyperbola is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\), then

    Length of latus rectum \(=\frac{2 a^{2}}{b}\)

    Given:

    Equation is \(25 y^{2}-24 x^{2}=600\)

    The given equation of hyperbola can be re-written as,

    \(\frac{x^{2}}{25}+\frac{y^{2}}{24}=1\)

    On comparing with standard equation, we get

    \(a=5\) and \(b =2 \sqrt{6}\)

    So, Length of latus rectum \(=\frac{2 a^{2}}{b}=\frac{2 \times 25}{2 \sqrt{6}} \)

    \(=\frac{25}{\sqrt{6}}\) units

  • Question 7
    1 / -0

    Find the 5th term form the end in the expansion of \(\left(x-\frac{1}{x}\right)^{12} ?\)

    Solution

    In the expansion of \((a+b)^{n}\) the general term is given by: \(T_{r+1}={ }^{n} C_{r} . a^{n-r}.b^{r}\)

    Given: \(\left(x-\frac{1}{x}\right)^{12}\)

    As we know that, in the expansion of \((a+b)^{n}\), the rth term from the end is \([(n+1)-r+1]=(n-r+2)\) th term from the beginning.

    Here, \(n=12\) and \(r=5\)

    So, the 5 th term from the \(=[(12+1)-5+1]=9\) th term from the beginning.

    \(T_{9}=T_{(8+1)}={}^{12} C_{8} .(x)^{4} .(\frac{-1}{x})^{8}\)

    \(\Rightarrow T_{9}=T_{(8+1)}=(-1)^{8} .{}^{12} C_{8} .(x)^{4} .(\frac{1}{x})^{8}\)

    \(=\frac{12 !}{8 ! 4 !} \times x^{4} \times \frac{1}{x^{8}}\)

    \(=\frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2} \times \frac{1}{x^{4}}\)

    \(\Rightarrow T_{9}=\frac{495}{x^{4}}\)

  • Question 8
    1 / -0

    The angle between the straight lines \(\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}\) and \(\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}\) is-

    Solution

    Given: \(\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}\) and \(\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}\)

    Direction ratios of lines are \(a_1=2, b_1=5, c_1=4\) and \(a_2=1, b_2=2, c_2=-3\)

    As we know, The angle between the lines is given by \(\cos \theta=\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\left(\sqrt{a_1^2+b_1^2+c_1^2}\right) \cdot\left(\sqrt{a_2^2+b_2^2+c_2^2}\right)}\)

    \( \Rightarrow \cos \theta=\frac{2 \times 1+5 \times 2+4 \times-3}{\left(\sqrt{2^2+5^2+4^2}\right) \cdot\left(\sqrt{1^2+2^2+(-3)^2}\right)}=0 \)

    \( \therefore \theta=90^{\circ}\)

  • Question 9
    1 / -0

    The value of \(\left|\begin{array}{ccc}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ 12 & -10 & 2\end{array}\right|\):

    Solution

    Properties of Determinants:

    • Determinant evaluated across any row or column is same.
    • If all the elements of a row or column are zeroes, then the value of the determinant is zero.
    • Determinant of an Identity matrix is 1.
    • If rows and columns are interchanged then the value of determinant remains the same (value does not change).
    • If any two-row or two-column of a determinant are interchanged the value of the determinant is multiplied by -1.
    • If two rows or columns of a determinant are identical the value of the determinant is zero.

    Let \(A=\left|\begin{array}{ccc}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ 12 & -10 & 2\end{array}\right|\)

    Now, Applying \(C _{2} \rightarrow C _{2}+ C _{1}\)

    \(A=\left|\begin{array}{ccc}\sin ^{2} x & \sin ^{2} x+\cos ^{2} x & 1 \\ \cos ^{2} x & \cos ^{2} x+\sin ^{2} x & 1 \\ 12 & 12-10 & 2\end{array}\right|\)

    \(A=\left|\begin{array}{ccc}\sin ^{2} x & 1 & 1 \\ \cos ^{2} x & 1 & 1 \\ 12 & 2 & 2\end{array}\right|\)

    We know that, if two rows or columns of a determinant are identical the value of the determinant is zero.

    Here \(C _{2}\) and \(C _{3}\) are identical

    \(\therefore A=0\)

  • Question 10
    1 / -0

    If \(f: R \rightarrow R\) is a function defined by \(f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\right) \pi\). where, [.] denotes the greatest integer function, then \(f\) is:

    Solution

    Given:

    \(f: R \rightarrow R\) is a function defined by \(f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\right) \pi\)

    For \(x=n, n \in Z\)

    LHL \(=\lim _{ x \rightarrow n ^{-}} f ( x )=\lim _{ x \rightarrow n ^{-}}[ x -1] \cos \left(\frac{2 x -1}{2}\right) \pi=0\)

    RHL \(=\lim _{ x \rightarrow n ^{+}} f ( x )=\lim _{ x \rightarrow n ^{+}}[ x -1] \cos \left(\frac{2 x -1}{2}\right) \pi=0\)

    \(f( n )=0\)

    \(\Rightarrow\) LHL = RHL \(=f(n)\)

    \(\Rightarrow f( x )\) is continuous for every real \(x\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now