We have \((x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} . y+{ }^{n} C_{2} x^{n-2}. y^{2}+\ldots+{ }^{n} C_{n} y^{n}\)
General term: General term in the expansion of \((x+y)^{n}\) is given by:
\(\mathrm{T}_{(\mathrm{r}+1)}={ }^{n} C_{\mathrm{r}} \times x^{\mathrm{n}-\mathrm{r}} \times y^{\mathrm{r}}\)
We have to find term independent of \(x\) in \(\left(x^{2}-\frac{1}{x^{3}}\right)^{10}\).
We know that,
\(\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times {x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}\)
\(\Rightarrow \mathrm{T}_{(\mathrm{r}+1)}={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left({x}^{2}\right)^{10-\mathrm{r}} \times\left(\frac{-1}{{x}^{3}}\right)^{\mathrm{r}}\)
\(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-2 \mathrm{r}} \times\left({x}^{3}\right)^{-\mathrm{r}}\)
\(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-2 \mathrm{r}} \times({x})^{-3 \mathrm{r}}\)
\(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-5 \mathrm{r}}\)
For the term independent of \(x\), power of \(x\) should be zero
Therefore, \(20-5 r=0\)
\(\Rightarrow \mathrm{r}=4\)
\(\mathrm{T}_{(4+1)}=(-1)^{4} \times{ }^{10} \mathrm{C}_{4}={ }^{10} \mathrm{C}_{4}\)