Self Studies

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(P(A)=\frac{1}{5}, P(B)=\frac{1}{3}\) and \(P(B \mid A)=\frac{1}{3}\), then \(P(A \cap B)\) is ?

    Solution

    Given, 

    \(P(A)=\frac{1}{5}\), 

    \(P(B)=\frac{1}{3}\), 

    And, \(P(B \mid A)=\frac{1}{3}\)

    We know that, 

    \({P}({B} \mid {A})=\frac{{P}({A} \cap {B})}{{P}({A})}\)

    \(\Rightarrow \frac{1}{3}=\frac{{P}({A} \cap {B})}{\frac{1}{5}}\)

    \(\Rightarrow {P}({A} \cap {B})=\frac{1}{15}\)

  • Question 2
    1 / -0

    What is the number of ways that a cricket team of \(11\) players can be made out of \(15\) players?

    Solution

    Formula:

    \(\mathrm{C}(\mathrm{n}, \mathrm{r})=\frac{n !}{r !(n-r) !}\)

    where \(n !=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1\)

    Calculation:

    In a cricket team,

    The order of choosing a cricket player does not affect the team.

    So, the number of ways that a cricket team of \(11\) players can be made out of \(15\) players is:

    \(\mathrm{C}(15,11)=\frac{15 !}{11 !(15-11) !}\)

    \(\Rightarrow \mathrm{C}(15,11)=\frac{15 !}{11 !(4) !}\)

    \(\Rightarrow \mathrm{C}(15,11)=\frac{15 \times 14 \times 13 \times 12 \times 11 !}{11 !(4 \times 3 \times 2 \times 1)}\)

    \(\Rightarrow \mathrm{C}(15,11)=15 \times 7 \times 13\)

    \(\Rightarrow \mathrm{C}(15,11)=1365\)

  • Question 3
    1 / -0

    If \(y=x^{x}\), what is \(\frac{d y}{d x}\) at \(x=1\) equal to?

    Solution

    Given:

    \(y=x^{x}\)

    Taking log both sides, we get,

    \(\Rightarrow \log y=\log x^{x} \)

    \(\Rightarrow \log y=x \log x\quad\left(\because \log m^{n}=n \log m\right)\)

    Differentiating above with respect to x, we get:

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{\log x}{d x}+\log x \times \frac{d x}{d x}\)

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{1}{x}+\log x \times 1\)

    \(\Rightarrow \frac{d y}{d x}=y \times[1+\log x]\)

    \(\Rightarrow \frac{d y}{d x}=x^{x} \times[1+\log x]\)

    Putting x = 1, we get:

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1^{1} \times[1+\log 1]\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1 \times[1+0] \quad(\because \log 1=0)\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1\)

  • Question 4
    1 / -0

    The graph of the inequations \(x \leq 0, y \leq 0\), and \(2 x+y+6 \geq 0\) is:

    Solution

    A triangular region in the 3rd quadrant

    Given inequalities x ≥ 0 , y ≥ 0 , 2x + y + 6 ≥ 0

    Now take x = 0, y = 0 and 2x + y + 6 = 0

    when x = 0, y = -6

    when y = 0, x = -3

    So, the points are A(0, 0), B(0, -6) and C(-3, 0)

     

    So, the graph of the inequations x ≤ 0 , y ≤ 0 , and 2x + y + 6 ≥ 0 is a triangular region in the 3rd quadrant.

     

  • Question 5
    1 / -0

    The vector \(2 \hat{j}-\hat{k}\) lies:

    Solution

    In vector, i component lies in X-axis,  j component lies in Y-axis and k component lies in Z-axis.

    Given vector is \(\mathrm{A}=2 \hat{j}-\hat{\mathrm{k}}\).

    The vector has \(j\) and \(k\) component.

    In vector, j component lies in Y-axis and k component lies in Z-axis.

    Given vector \(\mathrm{A}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}}\) lies in \(\mathrm{YZ}\) - plane.

  • Question 6
    1 / -0

    Let \(\mathrm{T}(\mathrm{k})\) be the statement, \(1+3+5+\ldots \ldots . .+(2 \mathrm{k}-1)=\mathrm{k}^{2}+10\), then:

    Solution

    Given,

    \(\mathrm{T}(\mathrm{k})\) \(=1+3+5+\ldots \ldots . .+(2 \mathrm{k-1)=k}^{2}+10\)

    \(\mathrm{T}(\mathrm{k})=2 \mathrm{k}-1=\mathrm{k}^{2}+10\)

    By putting \(\mathrm{k}=1\), we get

    \(\mathrm{T}(1)=2 \times 1-1\)

    \(=1^{2}+10\) 

    \(=1 \neq 10\)

    \(\mathrm{LHS} \neq \mathrm{RHS}\)

    \(\therefore \mathrm{T}(1)\) is not true.

    Let \(\mathrm{T}(\mathrm{k})\) is true, then

    \(\mathrm{T(k)}=1+3+5+\ldots \ldots \ldots+(2 \mathrm{k-1)=k^{2}}+10.........(1)\)

    \(= 1+3+5+\ldots \ldots . .+(2 \mathrm{k-1)+(2 k+1)=k^{2}+10+2 k+1}\)

    Using equation \((1)\), we get

    \(= 1+3+5+\ldots \ldots . .+(2 \mathrm{k}-1)+(2 \mathrm{k}+1)=(\mathrm{k}+1)^{2}+10\)

    \(\therefore \mathrm{T}(\mathrm{k}+1)\) is true.

    Thus, \(\mathrm{T(k)}\) is true \(\Rightarrow \mathrm{T(k+1)}\) is true.

  • Question 7
    1 / -0

    Find the distance of the point (4, 1) from the line 3x - 4y + 12 = 0?

    Solution

    Here, we have to find the distance of the line 3x - 4y + 12 = 0 from the point (4, 1)

    Let P = (4, 1)

    ⇒ x1 = 4 and y1 = 1

    Here, a = 3 and b = -4

    Now substitute x1 = 4 and y1 = 1 in the equation 3x - 4y + 12 = 0, we get

    ⇒ |3⋅ x1 - 4 ⋅ y1 + 12| = |12 - 4 + 12| = 20

    \(\Rightarrow \sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+(-4)^{2}}=5\)

    As we know that, the perpendicular distance \(\mathrm{d}\) from \(P\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) to the line \(\mathrm{ax}+\mathrm{by}+\mathrm{c}=0\) is given by \(d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|\)

    \(\Rightarrow d=\left|\frac{3 \cdot x_{1}-4 \cdot y_{1}+12}{\sqrt{3^{2}+(-4)^{2}}}\right|=\frac{20}{5}=4\)

  • Question 8
    1 / -0

    If ‘a’ is inversely proportional to ‘b’ and ‘b’ is inversely proportional to c. then:

    Solution

    Given:

    a α 1b      ----(i)

    b α 1c      ----(ii)

    Calculation:

    If b α 1c

    ⇒ b = kc

    Here k is a constant

    Put this value of b in equation (i) we get,

    a α 1kc

    ⇒ a α ck

    ⇒ a α c

    ∴ a is directly proportional to c.

  • Question 9
    1 / -0

    Under which one of the following conditions are the lines \(x = ay + b; z = cy + d\) and \(x = ey + f; z = gy + h\) perpendicular?

    Solution

    Given lines are: 

    \(x=a y+b\) and \(z=c y+d\)

    \(\Rightarrow x-b=a y\) and \(z-d=c y\)

    \(\therefore \frac{x -b}{a}=\frac{y}{1}=\frac{z-d}{c} \quad \quad \ldots\) (1)

    Therefore, direction ration of line is \(( a , 1, c )\).

    Again, lines are:

    \(x=e y+f\) and \(z=g y+h\) 

    \(\Rightarrow x-f=e y\) and \(z-h=g y\)

    \(\therefore \frac{ x - f }{ e }=\frac{ y }{1}=\frac{ z - h }{g}\quad \quad \ldots\) (2)

    Therefore, direction ration of line is \((e, 1, g)\).

    Given both line are perpendicular:

    We know that:

    If two lines are perpendicular to each other’s then product of direction ratio of these lines is zero.

    \(\therefore( a \times e )+(1 \times 1)+( c \times g )=0\)

    \(\Rightarrow ae +1+ cg =0\)

    or, \(a e+c g+1=0\)

  • Question 10
    1 / -0

    For what value of \(\alpha \in R\) the system of equation: \(x+2 y+z=3,2 x+4 y+2 z=6\) and \(\alpha x+ \alpha y+ \alpha z=3\alpha\) has infinitely many solutions.

    Solution

    By cramer’s rule:

    If \(\Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\), then the system is consistent and has infinitely many solutions.

    Given: \(x+y+z=3,2 x+2 y+2 z=6\) and \(a x+a y+a z=3 a\) As we know that,

    \(\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|\)

    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 1 \\ \alpha & \alpha & \alpha\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}3 & 1 & 1 \\ 6 & 4 & 1 \\ 3 \alpha & \alpha & \alpha\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & 6 & 1 \\ \alpha & 3 \alpha & \alpha\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 3 \\ 2 & 4 & 6 \\ \alpha & \alpha & 3 \alpha\end{array}\right|\)

    \(\Rightarrow \Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\)

    Thus, the given system has infinite solution for \(\alpha \in R\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now