Self Studies

Mathematics Test - 5

Result Self Studies

Mathematics Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The principal value of \(\tan ^{-1}(-\sqrt{3})+2 \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)\) is:

    Solution

    Let \(y=\tan ^{-1}(-\sqrt{3})=-\tan ^{-1}(\sqrt{3})\)

    Then, \(\tan y=-\sqrt{3}\)

    We know that the range of the principal value branch of \(\tan ^{-1}\) is \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\) and \(\tan \left(\frac{\pi}{3}\right)=\sqrt{3}\)

    \(\therefore\) The principal value of \(\tan ^{-1}(\sqrt{3})\) is \(-\frac{\pi}{3}\)     .....(i)

    Next,

    Let \(\mathscr{x}=\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)\)

    Then, \(\sec x=\frac{2}{\sqrt{3}}\)

    We know that the range of the principal value branch of \(\sec ^{-1}\) is \([0, \pi]-\frac{\pi}{2}\)

    \(\therefore\) The principal value of \(\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)\) is \(\frac{\pi}{3}\)     ......(ii)

    Adding (i) and (ii), we have

    \(\tan ^{-1}(-\sqrt{3})+2 \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=-\frac{\pi}{3}+2 \times \frac{\pi}{6}\)

    \(=0\)

    \(\therefore \tan ^{-1}(-\sqrt{3})+2 \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=0\)

  • Question 2
    1 / -0

    Find the area bounded by the line \(y=3-x\), the parabola \(y=x^{2}-9\) and \(x \geq-4, y \geq 0\).

    Solution

    Let's say that the two curves are: 

    \(f(x, y)=x+y-3=0\) 

    and, \(g(x, y)=x^{2}-y-9=0\)

    The points of their intersection are the points where \(f(x, y)=g(x, y)\).

    \(\Rightarrow x+y-3=x^{2}-y-9=0\)

    \(\Rightarrow-x-y+3=x^{2}-y-9=0\)

    \(\Rightarrow x^{2}+x-12=0\)

    \(\Rightarrow x^{2}+4 x-3 x-12=0\)

    \(\Rightarrow x(x+4)-3(x+4)=0\)

    \(\Rightarrow(x+4)(x-3)=0\)

    \(\Rightarrow x+4=0\) Or \(x-3=0\)

    \(\Rightarrow x=-4\) Or \(x=3\)

    And, \(y=3-(-4)=7\) Or \(y=3-3=0\)

    Therefore, the curves intersect at the points B(3, 0) and C(-4, 7) as shown in the diagram below:

    The points where \(y=x^{2}-9\) cuts the \(x\)-axis \((y=0)\) are \(A(-3,0)\) and \(B(3,0)\). 

    The required area is the shaded part \(\mathrm{ABC}=\) Area of BDC - Area of ADC

    \(=\int_{-4}^{3}(3-\mathrm{x}) \mathrm{dx}-\int_{-4}^{-3}\left(\mathrm{x}^{2}-9\right) \mathrm{dx}\)

    \(=3[\mathrm{x}]_{-4}^{3}-\left[\frac{\mathrm{x}^{2}}{2}\right]_{-4}^{3}-\left[\frac{\mathrm{x}^{3}}{3}\right]_{-4}^{-3}+9[\mathrm{x}]_{-4}^{-3}\)

    \(=3[3-(-4)]-\frac{1}{2}\left[3^{2}-(-4)^{2}\right]-\frac{1}{3}\left[(-3)^{3}-(-4)^{3}\right]+9[-3-(-4)]\)

    \(=3(7)-\frac{1}{2}(-7)-\frac{1}{3}(37)+9(1)\)

    \(=21+\frac{7}{2}-\frac{37}{3}+9\)

    \(=\frac{127}{6}\)

  • Question 3
    1 / -0

    The set of all \(\alpha \in \mathbf{R},\) for which \(\mathrm{w}=\frac{1+(1-8 \alpha) z}{1-z}\) is a purely imaginary number, for all \(z \in\) C satisfying \(|z|=1\) and \(\operatorname{Re} z \neq 1\), is:

    Solution

    It is given that \(|z|=1\) and \(\operatorname{Re} z \neq 1\)

    Let assume \(z=x+i y \Rightarrow x^{2}+y^{2}=1\)

    \(\omega=\frac{1+(1-8 \alpha) z}{1-z}\)

    \(\omega=\frac{(1+(1-8 \alpha))(x+i y)}{1-(x+i y)}\)

    On solving the above equation ,

    \(\operatorname{Re} \omega=\frac{(1+x(1-8 \alpha))(1-x)}{\left.\left(1-x^{2}\right)+y^{2}\right)}=0\) (since it is given that \(\omega\) is purely imaginary)

    \(\Rightarrow(1-x)+x(1-8 \alpha)=(1-8 \alpha) x^{2}+(1-8 \alpha) y^{2}\)

    As given \(x^{2}+y^{2}=1\)

    \((1-x)+x(1-8) \alpha=(1-8 \alpha)\)

    \(\Rightarrow \alpha=0\)

    So, \(\alpha \in\{0\}\)

  • Question 4
    1 / -0

    If \(x=3\), find the other 2 roots of \(\left|\begin{array}{ccc}x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x\end{array}\right|=0\)

    Solution

    Given: \(\left|\begin{array}{lll}\mathrm{x} & 2 & 3 \\ 1 & \mathrm{x} & 1 \\ 3 & 2 & \mathrm{x}\end{array}\right|=0\)

    \(\Rightarrow x\left(x^{2}-2\right)-2(x-3)+3(2-3 x)=0\)

    Now, \(x^{3}-2 x-2 x+6+6-9 x=0\)

    \(\Rightarrow x^{3}-13 x+12=0\)

    \(\because x=3\) is a root of the equation

    \(\Rightarrow(x-3)\left(x^{2}+3 x-4\right)=0\)

    \(\Rightarrow x^{2}+3 x-4=0\)

    \(\Rightarrow(x+4)(x-1)=0\)

    \(\Rightarrow x=1,-4\)

  • Question 5
    1 / -0

    If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar, then what is \((2 \vec{a} \times 3 \vec{b}) \cdot 4 \vec{c}+(5 \vec{b} \times 3 \vec{c}) \cdot 6 \vec{a}\) equal to?

    Solution

    Given: \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar i.e., \([\vec{a} \vec{b} \vec{c}]=0\)

    \(\Rightarrow(2 \vec{a} \times 3 \vec{b}) \cdot 4 \vec{c}=[2 \vec{a} 3 \vec{b} 4 \vec{c}]\) and \((5 \vec{b} \times 3 \vec{c}) \cdot 6 \vec{a}=[5 \vec{b} 3 \vec{c} 6 \vec{a}]\)

    \(\Rightarrow(2 \vec{a} \times 3 \vec{b}) \cdot 4 \vec{c}+(5 \vec{b} \times 3 \vec{c}) \cdot 6 \vec{a}=[2 \vec{a} 3 \vec{b} 4 \vec{c}]+[5 \vec{b} 3 \vec{c} 6 \vec{a}]\)

    As we know that, \([a b c]=[b c a]=[c a b]\)

    \(\Rightarrow(2 \vec{a} \times 3 \vec{b}) \cdot 4 \vec{c}+(5 \vec{b} \times 3 \vec{c}) \cdot 6 \vec{a}=[2 \vec{a} 3 \vec{b} 4 \vec{c}]+[6 \vec{a} 5 \vec{b} 3 \vec{c}]\)

    As we know that, \([\lambda a, b c]=\lambda[a b c]\)

    \(\Rightarrow[2 \vec{a} 3 \vec{b} 4 \vec{c}]+[6 \vec{a} 5 \vec{b} 3 \vec{c}]=24[\vec{a} \vec{b} \vec{c}]+90[\vec{a} \vec{b} \vec{c}]\)

    As we know that, vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar if and only if \([ a b c ]=0\)

    \(\Rightarrow[2 \vec{a} 3 \vec{b} 4 \vec{c}]+[6 \vec{a} 5 \vec{b} 3 \vec{c}]=0\)

    \(\Rightarrow(2 \vec{a} \times 3 \vec{b}) \cdot 4 \vec{c}+(5 \vec{b} \times 3 \vec{c}) \cdot 6 \vec{a}=0\)

  • Question 6
    1 / -0

    If nth terms of two A.P.’s are 3n + 8 and 7n + 15, then the ratio of their 12th terms will be:

    Solution

    Given,

    \(n^{\text {th }}\) terms of two A.P's are \(3 n+8\) and \(7 n+15\).

    So, \(12^{\text {th }}\) term in \(1^{\text {st }} \mathrm{AP}\): 

    an = 3 n + 8

    For n = 12,

    \(a _{12}= 3 \times 12+8\)

    \(=36+8=44\)

    Similarly, \(12^{\text {th }}\) term of \(2^{\text {nd }}\) AP: 

    an = 7n + 15

    For n = 12,

    \(a_{12}=7 \times 12+15\)

    \(=84+15=99\)

    \(\therefore\) The required ratio \(=\frac{44 }{ 99}\)

    \(=\frac{4 } 9=4: 9\)

  • Question 7
    1 / -0

    The equation of the line which passes through \( (1, 2)\) and is parallel to the line passing through \( (3, 4)\) and \( (4, 5)\), is:

    Solution

    As we know,

    Straight Lines:

    The general equation of a line is \(y=m x+c\), where \(m\) is the slope of the line.

    Parallel Lines: If two lines are parallel, then their slopes are equal.

    Let the equation of the line passing through \((3,4)\) and \((4,5)\) be \(y=m x+c\).

    \(\therefore\) We must have:

    \(4=3 m+c\)     .....(i)

    And, \(5=4 m+c\)      (ii)

    Subtracting equation (i) from equation (ii), we get:

    \(1=\mathrm{m}\)

    Let the equation of the line passing through the point \((1,2)\) be \(y=n x+d\).

    Since this line is parallel to the above line, we must have \({n}={m}=1\).

    Also, \(2=1(1)+\mathrm{d}\)

    \(\Rightarrow \mathrm{d}=1\)

    The required equation is:

    \(y=x+1\)

  • Question 8
    1 / -0

    Find the equation of the plane passing through the point \((1, 0, 1)\) and perpendicular to the planes \(2x + 3y - z = 2\) and \(x - y + 2z = 1\).

    Solution

    Let, two lines having direction ratios \(a_{1}, b_{1}, c_{1}\), and \(a_{2}, b_{2}, c_{2}\) respectively.

    We know that:

    Condition for perpendicular lines is: 

    \(a _{1} a _{2}+ b _{1} b _{2}+ c _{1}  c_{2}=0\)

    Condition for parallel lines is: 

    \(\frac{ a _{1}}{ a _{2}}=\frac{ b _{1}}{ b _{2}}=\frac{ c _{1}}{ c _{2}}\)

    The equation of the plane passing through the given point is:

    \(a(x-1)+b(y-0)+c(z-1)=0\)

    Given perpendicular planes are: 

    \(2 x+3 y-z=2\) and \(x-y+2 z=1\)

    \(\therefore 2 a+3 b-c=0 \quad \quad \ldots\)(i)

    Also,

    \(a-b+2 c=0\quad \quad \ldots\)(ii)

    On substracting \(2 \times\) (ii) from (i),

    \(5 b-5 c=0\)

    \(b=c\)

    Putting it in equation (ii),

    \(a-c+2 c=0\)

    \(a=-c\)

    Now, putting the values of \(a\) and \(b\) in the equation of the plane,

    \(-c(x-1)+c(y-0)+c(z-1)=0\)

    \(-x+1+y+z-1=0\)

    \(x-y-z=0\)

  • Question 9
    1 / -0

    \(2  \times 4^{2n+1}+3^{3 n+1}\) is divisible by: (for all \(n \in N\) )

    Solution

    Given,

    \(P(n)=2  \times 4^{2 n+1}+3^{3 n+1}\)

    By putting \(n=0\), we get

    \(P(0)=2  \times 4^{2 \times 0+1}+3^{3 \times 0+1}\)

    \(=8+3\)

    \(=11\)

    As we can say that \(11\) is divisible by \(11\).

    By putting \(n=1\), we get

    \(P(1)=2  \times 4^{2 \times 1+1}+3^{3 \times 1+1}\)

    \(=2  \times 4^{3}+3^{4}=209\)

    \(=11 \times 19\)

    As we can say that \(209\) is divisible by \(11\).

    By putting \(n=2\), we get

    \(P(2)=2  \times 4^{2 \times 2+1}+3^{3 \times 2+1}\)

    \(=2 \times 4^{5}+3^{7}=209\)

    \(=2,048+2,187\)

    \(=4235\)

    \(=11 \times 11 \times 35\)

    As we can say that \(4235\) is divisible by \(11\).

    Therefore we can say that \(P(n)\) is divisible by \(11\).

  • Question 10
    1 / -0

    How many two-digit numbers are divisible by 4?

    Solution

    Two digit numbers which are divisible by 4 are 12, 16, 20, ..., 96 forms an AP with first term a = 12, common difference d = 4 and nth term an = 96.

    ⇒ an = a + (n - 1) × d 

    ⇒ 12 + (n - 1) × 4 = 96

    ⇒ n = 22

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now