Let's say that the two curves are:
\(f(x, y)=x+y-3=0\)
and, \(g(x, y)=x^{2}-y-9=0\)
The points of their intersection are the points where \(f(x, y)=g(x, y)\).
\(\Rightarrow x+y-3=x^{2}-y-9=0\)
\(\Rightarrow-x-y+3=x^{2}-y-9=0\)
\(\Rightarrow x^{2}+x-12=0\)
\(\Rightarrow x^{2}+4 x-3 x-12=0\)
\(\Rightarrow x(x+4)-3(x+4)=0\)
\(\Rightarrow(x+4)(x-3)=0\)
\(\Rightarrow x+4=0\) Or \(x-3=0\)
\(\Rightarrow x=-4\) Or \(x=3\)
And, \(y=3-(-4)=7\) Or \(y=3-3=0\)
Therefore, the curves intersect at the points B(3, 0) and C(-4, 7) as shown in the diagram below:
![]()
The points where \(y=x^{2}-9\) cuts the \(x\)-axis \((y=0)\) are \(A(-3,0)\) and \(B(3,0)\).
The required area is the shaded part \(\mathrm{ABC}=\) Area of BDC - Area of ADC
\(=\int_{-4}^{3}(3-\mathrm{x}) \mathrm{dx}-\int_{-4}^{-3}\left(\mathrm{x}^{2}-9\right) \mathrm{dx}\)
\(=3[\mathrm{x}]_{-4}^{3}-\left[\frac{\mathrm{x}^{2}}{2}\right]_{-4}^{3}-\left[\frac{\mathrm{x}^{3}}{3}\right]_{-4}^{-3}+9[\mathrm{x}]_{-4}^{-3}\)
\(=3[3-(-4)]-\frac{1}{2}\left[3^{2}-(-4)^{2}\right]-\frac{1}{3}\left[(-3)^{3}-(-4)^{3}\right]+9[-3-(-4)]\)
\(=3(7)-\frac{1}{2}(-7)-\frac{1}{3}(37)+9(1)\)
\(=21+\frac{7}{2}-\frac{37}{3}+9\)
\(=\frac{127}{6}\)