Self Studies

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant:

    Solution

    If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant changes its sign.

    For example,

    A=|123456212|

    The value of determinant is:

    A=1[5×26×1]2[4×26×2]+3[4×15×2]

    A=1[106]2[812]+3[410]

    A=4+818=-6

    Now changing the row R­1 with R2,

    A=|456123212|

    The value of determinant is:

    A=4[2×23×1]5[1×23×2]+6[1×12×2]

    A=4[43]5[26]+6[14]

    A=4+2018=6

    Now changing the column C1 with C2,

    A=|213546122|

    The value of determinant is:

    A=2[4×26×2]1[5×26×1]+3[5×24×1]

    A=2[812]1[106]+3[104]

    A=-84+18=6


  • Question 2
    1 / -0
    If the planes \(2 x-y-3 z-7=0\) and \(4 x-2 y+5 k z+9=0\) are parallel, then \(5 k+7\) is:
    Solution

    Given,

    The planes \(2 x-y-3 z-7=0\) and \(4 x-2 y+5 k z+9=0\) are parallel

    We know that,

    If plane \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are a parallel i.e.,

    \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \neq \frac{d_{1}}{d_{2}}\)

    Now,

    If plane are parallel than ratio of coefficient of \(x, y\) and \(z\) are equal.

    \(\frac{2}{4}=\frac{-1}{-2}=\frac{-3}{5 k}\)

    \(\Rightarrow \frac{1}{2}=\frac{-3}{5 k}\)

    \(\Rightarrow 5 {k}=-6\)

    So, \(k=\frac{-6}{5}\)

    Now,

    \(5 k+7\)

    \(=5 \times(\frac{-6}{5})+7\)

    \(=(-6)+7\)

    \(=1\)

  • Question 3
    1 / -0

    The expression \(\left(\frac{1}{\sqrt{2}} \mathrm{i}+\frac{1}{\sqrt{2}} \mathrm{j}\right)\) is a:

    Solution

    Let, \(\vec{\mathrm{A}}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\)

    \(\therefore|\vec{\mathrm{A}}|=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}\)

    \(=\sqrt{\frac{1}{2}+\frac{1}{2}}\)

    \(=\sqrt{1}\)

    \(=1\)

    It is a unit vector.

  • Question 4
    1 / -0

    The probability that when a hand of 7 cards is drawn from a well-shuffled deck of 52 cards, it contains 3 Kings is:

    Solution

    Given,

    Total number of cards \(=52\)

    Number of king card \(=4\)

    Now, 7 cards are drawn from 52 cards.

    \(P(3 \text { cards are king })=\frac{{ }^{4} C_{3} \times{ }^{48} \mathrm{C}_{4}}{{ }^{52} \mathrm{C}_{7} }\)

    \(=\frac{4 \times\frac{(48 \times 47 \times 46 \times 45)}{(4 \times 3 \times 2 \times 1)\ }}{\frac{(52 \times 51 \times 50 \times 49 \times 48 \times 47 \times 46)}{(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)} }\)

    \(=\frac{4 \times(48 \times 47 \times 46 \times 45) \times(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}{(4 \times 3 \times 2 \times 1) \times(52 \times 51 \times 50 \times 49 \times 48 \times 47 \times 46)}\)

    \(=\frac{(7 \times 6 \times 5 \times 4 \times 45)}{(52 \times 51 \times 50 \times 49)}\)

    \(=\frac{(6 \times 5 \times 4 \times 45)}{(52 \times 51 \times 50 \times 7)}\)

    \(=(\frac{(6 \times 4 \times 45)}{(7 \times 52 \times 51 \times 10)}\)

    \(=\frac{(6 \times 45)}{(7 \times 13 \times 51 \times 10)}\)

    \(=\frac{(6 \times 3)}{(7 \times 13 \times 17 \times 2) }\)

    \(=\frac{(3 \times 3) }{(7 \times 13 \times 17) }\)

    \(=\frac{9}{1547}\)

  • Question 5
    1 / -0

    Consider the following Linear Programming Problem (LPP).

    Maximise \(\mathrm{Z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}\)

    Subject to:

    \(x_{1} \leq 2 \)

    \(x_{2} \leq 2 \)

    \(x_{1}+x_{2} \leq 2\)

    \(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) (i.e. +ve decision variables)

    What is the optimal solution to the above LPP?

    Solution

    Given

    Objective function

    Maximize, \(Z=X_{1}+2 X_{2}\)

    Constraints:

    \(X_{1} \leq 2 \ldots \ldots  (1)\)

    \(X_{2} \leq 2 \ldots \ldots  \ldots(2) \)

    \(X_{1}+X_{2} \leq 2 \ldots\ldots(3)\)

    Non neagative constarints

    \(X_{1}, X_{2} \geq 0\)

    The above equations can be written as

    \(\frac{X_{1}}{2} \leq 1(4) \)

    \(\frac{X_{2}}{2} \leq 1(5) \)

    \(\frac{X_{1}}{2}+\frac{X_{2}}{2} \leq 1(6)\)

    Plot the above equations on \(X_{1}-X_{2}\) graph and find out the solution space,

    Now, find out the value of the objective function at every extreme point of solution space.

    \(Z_{0}=0+2 \times 0=0 \)

    \(Z_{A}=0+2 \times 2=4\)

    \(Z_{B}=2+2 \times 0=2\)

    Since the value of the objective function is maximum at A. There \(A(0,2)\) is the optimal solution.

  • Question 6
    1 / -0

    The area of a triangle with vertices \((-3,0),(3,0)\) and \((0, k)\) is 9 sq units, then the value of \(k\) will be:

    Solution

    The area of a triangle with vertices \((-3,0),(3,0)\) and \((0, k)\) is 9 sq units

    Area of a triangle with vertices \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\) is given by,

    \(\Delta=\frac{1}{2}\left|\begin{array}{lll}x_1 & y_1 & 1 \\x_2 & y_2 & 1 \\x_3 & y_3 & 1\end{array}\right|\)

    \(\therefore \Delta=\frac{1}{2}\left|\begin{array}{ccc}-3 & 0 & 1 \\3 & 0 & 1 \\0 & k & 1\end{array}\right|\)

    \(9=\frac{1}{2}[-3(-k)-0+1(3 k)]\)

    \(\Rightarrow 18=3 k+3 k=6 k\)

    \(\therefore k=\frac{18}{6}=3\)

  • Question 7
    1 / -0

    If \(\sqrt{y}=\sin x+\cos x\), then \(\frac{d y}{d x}\) is:

    Solution

    Given: 

    \(\sqrt{y}=\sin x+\cos x\)  

    Squaring both sides, we get:

    \(\Rightarrow y=(\sin x+\cos x)^{2}\)

    \(\Rightarrow y=\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\)

    \(\Rightarrow y=1+\sin 2 x \quad(\because 2 \sin x \cos x=\sin 2 x)\)

    Differentiating above with respect to x, we get:

    \(\frac{{dy}}{{dx}}=0+2 \times \cos 2 {x}\)

    \(=2 \cos 2 {x}\)

  • Question 8
    1 / -0

    If \(\left(\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}}\right)^{3}+\left(\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\right)^{3}=\frac{229 a}{27}\), what is the value of a?

    Solution

    Let \(\mathrm{x}=\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}} ; \mathrm{y}=\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\)

    We know that, \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)

    \(\Rightarrow(\mathrm{x}+\mathrm{y})=\frac{\left[(\sqrt{22}+\sqrt{10})^{2}+(\sqrt{22}-\sqrt{10})^{2}\right]}{22-10}\)

    \(\Rightarrow(x+y)=\frac{22+10+22+10}{ 12}\)

    \(\Rightarrow(x+y)=\frac{64 }{ 12}\)

    \(\Rightarrow(x+y)=\frac{16 }{ 3}\) and \(x y=1\)

    \(\Rightarrow x^{2}+y^{2}+2 x y=(\frac{16 }{ 3})^{2}\)

    \(\Rightarrow x^{2}+y^{2}+2(1)=\frac{256 }{ 9}\)

    \(\Rightarrow x^{2}+y^{2}=\frac{256 }{ 9}-2\)

    \(\Rightarrow x^{2}+y^{2}=\frac{238 }{ 9}\)

    \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)

    \(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{238}{9}-1\right)\)

    \(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{229}{9}\right)\)

    \(\Rightarrow\left(\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}}\right)^{3}+\left(\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\right)^{3}=\left(\frac{229}{27}\right) \times 16\)

    \(\Rightarrow\left(\frac{229}{27}\right) \times 16=\frac{229 a}{27}\)

    \(\therefore a=16\)

  • Question 9
    1 / -0

    In a school, 50% students play cricket and 40% play football. If 10% of students play both the games, then what per cent of students play neither cricket nor football?

    Solution

    Let A = Students who play cricket, B = Students who play football

    ⇒ n (A) = 50% and n (B) = 40%

    ⇒ n (A ∩ B) = 10%

    ⇒ n (A ∪ B) = n (A) + n (B) - n (A ∩ B) = 50 + 40 - 10 = 80%

    As we know that (A ∪ B)’ = A’ ∩ B’

    ⇒ n ((A ∪ B)’) =n (U) - n (A ∪ B) = 100 - 80 = 20% = n (A’ ∩ B’)

  • Question 10
    1 / -0

    If \(n \in N,\left(\frac{n+1}{2}\right)^{n} \geq n !\) is true when:

    Solution

    Given,

    \(P(n)=\left(\frac{n+1}{2}\right)^{n} \geq n !\)

    Put, \(n=1\)

    \(P(1)=\left(\frac{1+1}{2}\right)^{1} \geq 1 !\)

    \(=1 \geq 1\)

    Put, \(n=2\)

    \(P(2)=\left(\frac{2+1}{2}\right)^{2} \geq 2 !=\left(\frac{3}{2}\right)^{2} \geq 2 \times 1\)

    \(=2.25 \geq 2\)

    Put, \(n=3\)

    \(P(3)=\left(\frac{3+1}{2}\right)^{3} \geq 3 !\)

    \(=8 \geq 3 \times 2 \times 1\)

    \(=8 \geq 6\)

    Thus, the given expression \(P(n)\) is true for \(n\geq 1\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now