Let \(\mathrm{x}=\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}} ; \mathrm{y}=\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\)
We know that, \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)
\(\Rightarrow(\mathrm{x}+\mathrm{y})=\frac{\left[(\sqrt{22}+\sqrt{10})^{2}+(\sqrt{22}-\sqrt{10})^{2}\right]}{22-10}\)
\(\Rightarrow(x+y)=\frac{22+10+22+10}{ 12}\)
\(\Rightarrow(x+y)=\frac{64 }{ 12}\)
\(\Rightarrow(x+y)=\frac{16 }{ 3}\) and \(x y=1\)
\(\Rightarrow x^{2}+y^{2}+2 x y=(\frac{16 }{ 3})^{2}\)
\(\Rightarrow x^{2}+y^{2}+2(1)=\frac{256 }{ 9}\)
\(\Rightarrow x^{2}+y^{2}=\frac{256 }{ 9}-2\)
\(\Rightarrow x^{2}+y^{2}=\frac{238 }{ 9}\)
\(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)
\(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{238}{9}-1\right)\)
\(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{229}{9}\right)\)
\(\Rightarrow\left(\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}}\right)^{3}+\left(\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\right)^{3}=\left(\frac{229}{27}\right) \times 16\)
\(\Rightarrow\left(\frac{229}{27}\right) \times 16=\frac{229 a}{27}\)
\(\therefore a=16\)