Let a small strip of mop has width dx and radius x, as shown below,

Torque applied to move this strip is
dτ = Force on strip × Perpendicular distance from the axis
dτ = Force per unit area × Area of strip × Perpendicular distance from the axis.
Given,
Radius of the mop \(=\mathrm{R}\)
Force applied on the mop \(=F\)
Friction coefficient between the mop and the floor \(=\mu\)
Here, Force per unit area \(=\frac{F}{A}=\frac{F}{\pi R^{2}}\)
Area of the strip \(=2 \pi r=2 \pi x d x\)
Perpendicular distance from the axis \(=\mathrm{x}\)
Applying all these in torque,
\(\Rightarrow d \tau=\frac{\mu F}{\pi R^{2}} 2 \pi x d x . x\)
\(\Rightarrow d \tau=\frac{2 \mu F x^{2}}{R^{2}} \cdot d x\)
So, the total torque to be applied on the mop is
\(\Rightarrow \tau=\int_{x=0}^{x=R} d \tau=\int_{0}^{R} \frac{2 \mu F x^{2}}{R^{2}} \cdot d x\)
\(\Rightarrow \tau=\frac{2 \mu F}{R^{2}} \times\left[\frac{x^{3}}{3}\right]_{0}^{R}\)
\(\Rightarrow \tau=\frac{2 \mu F}{R^{2}} \times \frac{R^{3}}{3}\)
\(\therefore \tau=\frac{2}{3} \mu F R(\mathrm{Nm})\)
Therefore, the torque applied by the machine on the mop is \(\frac{2}{3} \mu F R\) (Nm).