When force F is applied at the centre of roller of mass m as shown below

Its acceleration is given by
\(\frac{F-f}{m}=\alpha\) ......... (1)
Where, \(f=\) force of friction and \(m=\) mass of roller.
Torque on roller is provided by friction \(f\) and it is torque is given by,
\(\mathrm{T}={f R}=\mathrm{la}\)
Where, \(\mathrm{I}=\) moment of inertia of solid cylindrical roller \(=\frac{m R^{2}}{2}\)
\(\alpha=\) angular acceleration of the cylinder \(=\frac{a}{R}\)
So,
\(f=\frac{m R^{2}}{2} \cdot \frac{a}{R}\)
\(f=\frac{m a R}{2}\)
\(\therefore f=\frac{m \alpha}{2} \quad \ldots\)
\(\left[\alpha=\frac{a}{R}\right]\) ......... (2)
Substituting equations (2) in (1), we get
\(\left(F-\frac{m a}{2}\right)=m \alpha\)
\(F=m \alpha+\frac{m a}{2}\)
\(F=\frac{m a}{R}+\frac{m a}{2}=m a+\frac{m a}{2}\)
\(F=\frac{2 m a+m a}{2}\)
\(F=\frac{3 m a}{2}\)
\(F=\frac{3}{2} m a\)
Given,
Radius of the roller \(=\mathrm{R}\)
Mass of the roller \(=\mathrm{m}\)
To find the value of a
\(F=\frac{3}{2} m a\)
\(a=\frac{2 F}{3 m}\)
Hence, the value of \(\alpha\) is,
\(a=\frac{2 F}{3 m}\)
\(\left[\alpha=\frac{a}{R} \Rightarrow a=R \alpha\right]\)
\(R \alpha=\frac{2 F}{3 m}\)
\(\therefore \alpha=\frac{2 F}{3 m R}\)
Therefore, the angular acceleration of the cylinder is \(\frac{2 F}{3 m R}\).