Concept:
Bulk Modulus: The ratio of hydraulic stress to the corresponding hydraulic strain is called bulk modulus.
\(K = - \frac{P}{{{\rm{\Delta }}V/V}}\)
- The negative sign indicates the fact that with an increase in pressure, a decrease in volume occurs. That is, if p is positive, ΔV is negative. Thus, for a system in equilibrium, the value of bulk modulus B is always positive.
- SI unit of bulk modulus is the same as that of pressure i.e., N m–2 or Pa.
Thin cylindrical shell ⇒ When \(\frac{t}{d} < \frac{1}{{15}}\), it is called a thin shell, otherwise thick shell.
Volumetric strain in a thin cylindrical shell :
\({\varepsilon _v} = \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right)\)
Where, P = Internal pressure, D = Diameter of the shell, t = Thickness of shell, E = Modulus of Elasticity, μ = Poisson’s ratio.
Calculation:
Given: D = 50 mm, t = 2 mm, L = 1000 mm, K = 2 × 106 MPa
\(\therefore \frac{t}{D} = \frac{2}{{50}} = \frac{1}{{25}} < \frac{1}{{15}} \Rightarrow \) Thin cylindrical shell.
Let the total fluid that can be pumped ΔV cc.
Initial volume of the fluid \(= V = \frac{\pi }{4} \times {50^2} \times 1000\) = 1963.4495 mm3 = 1963.5 cc.
\(\because K = - \frac{P}{{{\rm{\Delta }}V/V}}\)
Due to a pressure rise of 50 Mpa,
\({\rm{\Delta }}{V_1} = \frac{{{\rm{\Delta }}P}}{K} \times V \Rightarrow {\rm{\Delta }}{{\rm{V}}_1} = \frac{{{\rm{\Delta }}P}}{K} \times 1963.5\)
Volumetric strain in tube, \({\varepsilon _v} = \frac{{{\rm{\Delta }}V}}{V}\)
\(\Rightarrow {\rm{\Delta }}{V_2} = {\varepsilon _v} \times V = \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right) \times V\)
\({\bf{\Delta }}{V_1} + {\bf{\Delta }}{V_2}\) = Extra fluid that can be pumped at a pressure rise of 50 MPa.
\(\Rightarrow \left[ {\frac{{{\rm{\Delta }}P}}{K} \times V + \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right) \times V} \right] = {\rm{\Delta }}V\)
\(\Rightarrow \left( {\frac{{50}}{{2 \times {{10}^6}}} \times 1963495 + \frac{{50 \times 50}}{{4 \times 2 \times 1 \times {{10}^5}}} \times \left( {5 - 4 \times 0.3} \right) \times 1963495} \right] = {\rm{\Delta }}V\)
⇒ ΔV = 23365.59 mm3 ≈ 23.37 cc
Important Point:
Important Formulae for Thin shells:-
Cylinder | Sphere |
- \({\sigma _h} = \frac{{PD}}{{2t}}\)
| - \({\sigma _h} = {\sigma _l} = \frac{{PD}}{{4t}}\)
|
- \({\sigma _l} = \frac{{PD}}{{4t}}\)
| --- |
- \({\varepsilon _h} = \frac{{{\rm{\Delta }}D}}{D} = \frac{{PD}}{{4tE}}\left( {2 - \mu } \right)\)
| - \({\varepsilon _h} = \frac{{PD}}{{4tE}}\left( {1 - \mu } \right)\)
|
- \({\varepsilon _\ell } = \frac{{{\rm{\Delta }}\ell \;}}{\ell } = \frac{{PD}}{{4tE}}\left( {1 - 2\mu } \right)\)
| ---- |
- \({\varepsilon _v} = \frac{{{\rm{\Delta }}v}}{v} = 2{\varepsilon _h} + {\varepsilon _\ell } = \frac{{PD}}{{4tE}}\left( {5 - 4\mu } \right)\)
| - \({\varepsilon _v} = 3{\varepsilon _h} = \frac{{PD}}{{4tE}}\left( {1 - \mu } \right)\)
|
- \({\tau _{max - in\;plane}} = \frac{{PD}}{{8t}}\)
| - \({\tau _{\max - in\;plane}} = 0\)
|
- \({\tau _{abs\;max}} = \frac{{PD}}{{4t}}\)
| - \({\tau _{abs\;max}} = \frac{{PD}}{{8t}}\)
|