Self Studies

Strength of Materials Test 1

Result Self Studies

Strength of Materials Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    If 10 coils of a spring cut out from a spring of 25 coils, then the stiffness of new spring will be
    Solution

    \(Stiffness\ \alpha \frac{1}{{number\ of\ active\ coils}}\)

    So, \(25 \times k = 10 \times k' \Rightarrow k' = \frac{{25}}{{10}}k\)

    \(\Rightarrow k' = 2.5\ k\)

  • Question 2
    2 / -0.33
    What will be the value of Poisson’s ratio if G/K = 0.6
    Solution

    We know from the relations of clastic Constant

    E = 2G (1 + μ)

    E = 3K (1 – 2μ)

    On equating 2G (1 + μ) = 3K (1 – 2μ)

    \(\frac{{2G}}{{3K}}\left( {1 + \mu } \right) = \left( {1 - 2\mu } \right)\) 

    \(\frac{2}{3} \times 0.6\left( {1 + \mu } \right) = 1 - 2\mu \) 

    \(0.4\left( {1 + \mu } \right) = 1 - 2\mu \) 

    \(\Rightarrow 0.4 + 0.4\mu = 1 - 2\mu \) 

    2.4μ = 0.6

    μ = 0.25
  • Question 3
    2 / -0.33
    If the equivalent bending moment in a shaft is 500 Nm and the torque acting is 300 Nm. The magnitude of the bending moment is
    Solution

    Concept:

    Equivalent Bending moment:

    It is the bending moment which while acting alone produces maximum bending stress equal to the maximum principal stress produced due to combined action of moment and torque. The equivalent bending moment for a shaft which is subjected to the combined twisting moment (T) and bending moment (M) is given by the equation:

    \({M_{eq}} = \frac{1}{2}\;\left[ {M + \sqrt {{M^2} + {T^2}} } \right]\)

    Calculation:

    Meq = 500 Nm, T = 300 Nm

    \({500} = \frac{1}{2}\;\left[ {M + \sqrt {{M^2} + {300^2}} } \right]\)⇒  M =455 Nm

    Important Point:

    Equivalent torque:

    It is the torque which while acting alone produces maximum shear stress equal to maximum shear stress due to combined action of moment and torque.

    The magnitude of \({T_{eq}} = \sqrt {{M^2} + {T^2}}\)

  • Question 4
    2 / -0.33
    The yield stress of steel in both tension and compression is 250 MPa and poisson’s ratio(μ) is 0.25. It is subjected to principal stresses of 120 MPa (Tensile), 60 MPa (Tensile) and 30 MPa (compressive). The factor of safety (FOS) according to the maximum strain energy theory is _______ ( up to 3 decimal places)
    Solution

    Concept:

    Maximum strain energy theory (Beltrami-Haigh Theory):-

    As per this theory, for no failure maximum strain energy per unit volume should be less than strain energy per unit volume under uniaxial loading when the stress is fy.

    \(\frac{1}{{2E}}\left[ {\sigma _1^2 + \sigma _2^2 + \sigma _3^2 - 2\mu \left( {{\sigma _1}{\sigma _2} + {\sigma _2}{\sigma _3} + {\sigma _3}{\sigma _1}} \right)} \right] < \frac{{f_y^2}}{{2E}}\)

    Where σ1, σ2, σ3 are principal stresses.

    This theory is applicable for ductile material, not suitable for brittle material, and not suitable for the pure shear case.

    Also;  for design purposes:-

    \(\left( {\sigma _1^2 + \sigma _2^2 + \sigma _3^2 - 2\mu \left( {{\sigma _1}{\sigma _2} + {\sigma _2}{\sigma _3} + {\sigma _1}{\sigma _3}} \right)} \right) \le {\left( {\frac{{{\sigma _y}}}{{FOS}}} \right)^2}\)

    Calculation:

    σ1 = 120 Mpa, σ2 = 60 MPa, σ3 = -30 MPa

    σy = 250 MPa, μ = 0.3

    (1202 + 602 + 302 – 2 × 0.25 (120 × 60 – 60 × 30 – 120 × 30) \( \le {\left( {\frac{{250}}{{FOS}}} \right)^2}\)

    \( \Rightarrow 18000 \le {\left( {\frac{{250}}{{FOS}}} \right)^2} \Rightarrow {\left( {FOS} \right)^2} = \left( {\frac{{62500}}{{18000}}} \right)\) 

    FOS = 1.863

    Important Point:

    The maximum strain energy theory does not satisfy the case of the pure shear but it still gives good results in case of Ductile Materials.        
  • Question 5
    2 / -0.33
    A copper tube of 50 mm diameter and 1000 mm length having a thickness of 2 mm is closed at the ends and filled with a fluid of bulk modulus 2 × 106 MPa. The extra amount of fluid that can be pumped is the tube for a maximum pressure increase of 50 MPa is (correct to 2 decimal place) ______ cc.
    Solution

    Concept:

    Bulk Modulus: The ratio of hydraulic stress to the corresponding hydraulic strain is called bulk modulus.

    \(K = - \frac{P}{{{\rm{\Delta }}V/V}}\)

    • The negative sign indicates the fact that with an increase in pressure, a decrease in volume occurs. That is, if p is positive, ΔV is negative. Thus, for a system in equilibrium, the value of bulk modulus B is always positive.
    • SI unit of bulk modulus is the same as that of pressure i.e., N m–2 or Pa.

     

    Thin cylindrical shell ⇒ When \(\frac{t}{d} < \frac{1}{{15}}\), it is called a thin shell, otherwise thick shell.

    Volumetric strain in a thin cylindrical shell :

    \({\varepsilon _v} = \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right)\)

    Where, P = Internal pressure, D = Diameter of the shell, t = Thickness of shell, E = Modulus of Elasticity, μ = Poisson’s ratio.

    Calculation:

    Given: D = 50 mm, t = 2 mm, L = 1000 mm, K = 2 × 106 MPa

    \(\therefore \frac{t}{D} = \frac{2}{{50}} = \frac{1}{{25}} < \frac{1}{{15}} \Rightarrow \) Thin cylindrical shell.

    Let the total fluid that can be pumped ΔV cc.

    Initial volume of the fluid \(= V = \frac{\pi }{4} \times {50^2} \times 1000\) = 1963.4495 mm3 = 1963.5 cc.

    \(\because K = - \frac{P}{{{\rm{\Delta }}V/V}}\)

    Due to a pressure rise of 50 Mpa,

    \({\rm{\Delta }}{V_1} = \frac{{{\rm{\Delta }}P}}{K} \times V \Rightarrow {\rm{\Delta }}{{\rm{V}}_1} = \frac{{{\rm{\Delta }}P}}{K} \times 1963.5\)

    Volumetric strain in tube, \({\varepsilon _v} = \frac{{{\rm{\Delta }}V}}{V}\)

    \(\Rightarrow {\rm{\Delta }}{V_2} = {\varepsilon _v} \times V = \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right) \times V\)

    \({\bf{\Delta }}{V_1} + {\bf{\Delta }}{V_2}\) = Extra fluid that can be pumped at a pressure rise of 50 MPa.

    \(\Rightarrow \left[ {\frac{{{\rm{\Delta }}P}}{K} \times V + \frac{{{\rm{\Delta }}PD}}{{4tE}}\;\left( {5 - 4\mu } \right) \times V} \right] = {\rm{\Delta }}V\)

    \(\Rightarrow \left( {\frac{{50}}{{2 \times {{10}^6}}} \times 1963495 + \frac{{50 \times 50}}{{4 \times 2 \times 1 \times {{10}^5}}} \times \left( {5 - 4 \times 0.3} \right) \times 1963495} \right] = {\rm{\Delta }}V\)

    ⇒ ΔV = 23365.59 mm3 ≈ 23.37 cc

    Important Point:

    Important Formulae for Thin shells:-

    Cylinder

    Sphere

    • \({\sigma _h} = \frac{{PD}}{{2t}}\)
    • \({\sigma _h} = {\sigma _l} = \frac{{PD}}{{4t}}\)
    • \({\sigma _l} = \frac{{PD}}{{4t}}\)

    ---

    • \({\varepsilon _h} = \frac{{{\rm{\Delta }}D}}{D} = \frac{{PD}}{{4tE}}\left( {2 - \mu } \right)\)
    • \({\varepsilon _h} = \frac{{PD}}{{4tE}}\left( {1 - \mu } \right)\)
    • \({\varepsilon _\ell } = \frac{{{\rm{\Delta }}\ell \;}}{\ell } = \frac{{PD}}{{4tE}}\left( {1 - 2\mu } \right)\)

    ----

    • \({\varepsilon _v} = \frac{{{\rm{\Delta }}v}}{v} = 2{\varepsilon _h} + {\varepsilon _\ell } = \frac{{PD}}{{4tE}}\left( {5 - 4\mu } \right)\)
    • \({\varepsilon _v} = 3{\varepsilon _h} = \frac{{PD}}{{4tE}}\left( {1 - \mu } \right)\)
    • \({\tau _{max - in\;plane}} = \frac{{PD}}{{8t}}\)
    • \({\tau _{\max - in\;plane}} = 0\)
    • \({\tau _{abs\;max}} = \frac{{PD}}{{4t}}\)
    • \({\tau _{abs\;max}} = \frac{{PD}}{{8t}}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now