Concept
If the velocity field represents the flow, it must satisfy the continuity equation, given as:
\(\frac{{\partial u}}{{\partial x}} + \;\frac{{\partial v}}{{\partial y}} = 0\)
Where u and v are the x and y components of the velocity.
If it satisfies, the rate of shear deformation is given as:
\(\theta = \frac{1}{2}\left( {\;\frac{{\partial v}}{{\partial x}} + \;\frac{{\partial u}}{{\partial y}}} \right)\)
And the angular velocity in z-direction is given as,
\(\omega = \frac{1}{2}\left( {\;\frac{{\partial v}}{{\partial x}} - \;\frac{{\partial u}}{{\partial y}}} \right)\)
Calculation:
u = 3y – y2 and v = 3x – x2
\(\frac{{\partial u}}{{\partial x}} = 0\;\;and\;\frac{{\partial v}}{{\partial y}} = 0\)
\( \Rightarrow \frac{{\partial u}}{{\partial x}} + \frac{{\partial v}}{{\partial y}} = 0 + 0 = 0\)
i.e. equation of continuity is satisfied, so, it represents a flow field.
Now,
\(\frac{{\partial v}}{{\partial x}} = 3 - 2x\;\;and\;\frac{{\partial u}}{{\partial y}} = 3 - 2y\)
\(\theta = \frac{1}{2}\left( {3 - 2x + 3 - 2y} \right) = \frac{1}{2}\left[ {6 - 2\left( {x + y} \right)} \right]\)
\(\theta \left( {x,\;y} \right) = \frac{1}{2}\left( {6 - 2\left( {x + y} \right)} \right)\)
θ (2, 3) \(= \frac{1}{2}\left[ {6 - 2\left( {2 + 3} \right)} \right]\)
θ(2, 3) = -2 units
Again,
\(\omega = \frac{1}{2}\left( {\left( {3 - 2x} \right) - \left( {3 - 2y} \right)} \right)\)
⇒ \(\omega = \frac{1}{2}\left( {2y - 2x} \right) = y - x\)
∴ ω(2, 3) = 3 – 2 = 1 units
∴ θ = -2 units and ω = 1 units.