Concept:
Flow-density-speed relationship:
Speed (v) is defined as the rate of motion in distance per unit of time. Generally, it is expressed in km/ hr or m/s unit.
Flow or volume (q) is defined as the number of vehicles that pass a point on a highway or a given lane or direction of a highway during a specific time interval. It is expressed in vehicles/hour.
Density (k) is defined as the number of vehicles occupying a given length of highway or lane and is generally expressed as vehicles/km.
The relationship between Speed (v), flow (q) and density (k) is given by, q = k × V.
Calculation:
Given, \({\rm{V}} = ({{\rm{V}}_{\rm{f}}} - 10){{\rm{e}}^{0.45 - \frac{{\rm{k}}}{{{{\rm{k}}_0}}}}}\) and \({\rm{q\;}} = {\rm{\;k\;}} \times {\rm{V}} = {\rm{k}}({{\rm{V}}_{\rm{f}}} - 10){{\rm{e}}^{0.45 - \frac{{\rm{k}}}{{{{\rm{k}}_0}}}}}\)
When flow to be maximum, then \(\frac{{{\rm{dq}}}}{{{\rm{dk}}}} = 0{\rm{\;\;\;}}\therefore \left( {{{\rm{V}}_{\rm{f}}} - 10} \right)\left[ {{\rm{k}} \times {{\rm{e}}^{0.45 - \frac{{\rm{k}}}{{{{\rm{k}}_0}}}}} \times \left( { - \frac{1}{{{{\rm{k}}_0}}}} \right) + {{\rm{e}}^{0.45 - \frac{{\rm{k}}}{{{{\rm{k}}_0}}}}}} \right] = 0{\rm{\;}}\)
\(\therefore - \frac{{\rm{k}}}{{{{\rm{k}}_0}}} + 1 = 0{\rm{\;\;}}\therefore {\rm{k}} = {{\rm{k}}_0}\)
Hence, maximum capacity, \({{\rm{q}}_{{\rm{max}}}} = {{\rm{k}}_0} \times {\rm{\;}}({{\rm{V}}_{\rm{f}}} - 10){{\rm{e}}^{0.45 - \frac{{{{\rm{k}}_0}}}{{{{\rm{k}}_0}}}}} = \frac{{{{\rm{k}}_0}\left( {{{\rm{V}}_{\rm{f}}} - 10} \right)}}{{{{\rm{e}}^{0.55}}}}{\rm{\;}}\)
Now given, Vf = 80 km/hr and k0 = 150 vehicles/ km.
Hence, \({{\rm{q}}_{{\rm{max}}}} = {\rm{\;}}\frac{{{{\rm{k}}_0}\left( {{{\rm{V}}_{\rm{f}}} - 10} \right)}}{{{{\rm{e}}^{0.55}}}} = \frac{{150 \times \left( {80 - 10} \right)}}{{{{\rm{e}}^{0.55}}}} = 6057.97 \approx 6058{\rm{\;vehicles}}/{\rm{\;hour}}\)
Trick/Tip:
Optimum Density is defined as the density at which the traffic flow is maximum for any model. So, in question if optimum density is explicitly mentioned and given, then calculate flow at optimum density and it will be the maximum flow as per the model.