Concept:
Length of the transition curve:
a) Based on rate of change of centrifugal acceleration
\({{\rm{L}}_{\rm{s}}} = \frac{{{{\rm{v}}^3}}}{{{\rm{CR}}}}\)
b) Based on super elevation criteria
i) If rotated about outer edge:
\({\rm{Ls\;}} = {\rm{\;eN}}\left( {{\rm{W\;}} + {\rm{\;We}}} \right)\)
ii) If rotated about center edge
\({\rm{Ls\;}} = \frac{{{\rm{eN}}\left( {{\rm{W\;}} + {\rm{\;We}}} \right)}}{2}\)
c) Based on IRC recommendations
\({{\rm{L}}_{\rm{s}}} = \frac{{2.7{{\rm{V}}^2}}}{{\rm{R}}}\)
Where
Ls = Length of transition curve
v = speed of vehicle in m/s
c = rate of change of centrifugal acceleration
R = radius of the curve
e = super elevation provided
N = rate of change of super elevation
W = width of pavement
We = Width of extra widening
Given:
Horizontal curve radius (R) = 600 m
Design speed (v) = 80 × 5/18 m/s = 22.22 m/s
Total pavement width (W) = 7.5 m
The number of lanes (n) = 2
Wheelbase = l = 6 m
Allowable rate of super elevation = 1 in 150
Change of centrifugal acceleration = 0.507
Calculation:
(i) Length of transition curve (based centrifugal acceleration)
\({{\rm{L}}_{\rm{s}}} = \frac{{{{\rm{v}}^3}}}{{{\rm{CR}}}} = \frac{{{{\left( {80 \times \frac{5}{{18}}} \right)}^3}}}{{0.507 \times 600}} = 36.07{\rm{\;m}}\)
(ii) Based on superelevation criteria
\({\rm{Ls\;}} = {\rm{\;eN}}\left( {{\rm{W\;}} + {\rm{\;We}}} \right)\)
The pavement rotating about an outer edge
\({\rm{e}} = \frac{{{{\left( {0.75{\rm{V}}} \right)}^2}}}{{{\rm{gR}}}} = \frac{{{{\left( {0.75 \times 22.22} \right)}^2}}}{{9.81 \times 600}} = 0.0471\)
e = 4.71% < 7% ⇒ Hence Okay
∴ e = 0.047
For radus greater than 300 m, extra widening is not required. ⇒ We = 0
∴ Total width = 7.5 = 7.50 m
\({\rm{Ls\;}} = {\rm{\;eN}}\left( {{\rm{W\;}} + {\rm{\;We}}} \right) = {\rm{\;}}150 \times 0.047{\rm{\;}} \times 7.50 = 52.86{\rm{\;m}}\)
(iii) By using empirical formula
\({{\rm{L}}_{\rm{s}}} = \frac{{2.7{{\rm{V}}^2}}}{{\rm{R}}} = \frac{{2.7 \times {{80}^2}}}{{600}} = 28.8{\rm{\;m}}\)
∴ Ls = (Maximum of above three condition)
L
s = 55.695 m ≃ 55.7 m