Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 10

Result Self Studies

Engineering Mathematics Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Using the trapezoidal rule, and dividing the interval of integration into three equal subintervals, the definite integral \(\mathop \smallint \limits_{ - 1}^{ + 1} \left| x \right|dx\) is _____
    Solution

    Concept:

    Trapezoidal rule states that for a function y = f(x)

    x

    x0

    x1

    x2

    x3

    ……

    xn

    y

    y0

    y1

    y2

    y3

    ……

    yn

    xn = x0 + nh, where n = Number of sub-intervals

    h = step-size

    \(\mathop \smallint \nolimits_{{x_0}}^{{x_0} + nh} f\left( x \right)dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_n}} \right) + 2\left( {{y_1} + {y_2} + {y_3} + \ldots + {y_{n - 1}}} \right)} \right]\)

    For a trapezoidal rule, a number of sub-intervals must be a multiple of 1.

    Calculation:

    x

    -1

    1

    Y = |x|

    1

    1


    N = 3

    \(h = \frac{{{x_n} - {x_p}}}{n} = \frac{{1 - \left( 1 \right)}}{3} = \frac{2}{3}\)

    By applying Trapezoidal rule, \(\mathop \smallint \limits_{ - 1}^1 \left| x \right|dx = \frac{h}{2}\left[ {{y_n} - {y_o}} \right] + 2\left( {{y_1} + {y_2} \ldots .. + {y_{n - 1)}}} \right]\)

    \(= \frac{2}{{\frac{3}{2}}}\left[ {\left( {1 + 1} \right) + 2\left( {\frac{1}{3} + \frac{1}{3}} \right)} \right] = \frac{{10}}{9} = 1.1111\)

  • Question 2
    1 / -0

    Match the application to appropriate numerical method.

     

    Application

     

    Numerical Method

    P1:

    Numerical integration

    M1:

    Newton-Raphson Method

    P2:

    Solution to a transcendental equation

    M2:

    Runge-Kutta Method

    P3:

    Solution to a system of linear equations

    M3:

    Simpson’s 1/3-rule

    P4:

    Solution to a differential equation

    M4:

    Gauss Elimination Method

     

    1) P1—M3, P2—M2, P3—M4, P4—M1

    2) P1—M3, P2—M1, P3—M4, P4—M2

    3) P1—M4, P2—M1, P3—M3, P4—M2

    4) P1—M2, P2—M1, P3—M3, P4—M4

    Solution

    P1: For Numerical Integration, the methods used are:

    1) Simpson’s 1/3 rule

    2) Simpson 3/8 rule

    3) Trapezoidal rule

    P1 → M3

    P2: Solution to a transcendental equation:

    The method used are:

    1) Bisection method

    2) Newton Raplason method

    3) Secant method

    4) Regular – Falsi method

    P2 → M1

    P3: Solution to a system of the linear equation: Gauss elimination method

    P3 → M4

    P4: Solution to a differential equation.

    The methods used are:

    1) Euler’s method

    2) Runge – Kutta method

    P4 – M2

  • Question 3
    1 / -0
    The root of the function f(x) = x3 + x – 1 obtained after first iteration on application of Newton-Raphson scheme using an initial guess of x0 = 1 is
    Solution

    Concept:

    According to Newton-Raphson Method

    \({X_{n + 1}} = {X_n} - \frac{{f\left( {{X_n}} \right)}}{{f'\left( {{X_n}} \right)}}\)

    Calculation:

    For function f(x) = x3+ x – 1 at x0 = 1

    \({X_1} = {X_0} - \frac{{f\left( {{X_0}} \right)}}{{f'\left( {{X_0}} \right)}} = 1 - \frac{{\left( {1 + 1 - 1} \right)}}{{\left[ {3 \times {{\left( 1 \right)}^2} + 1} \right]}} = 1 - \frac{1}{4} = \frac{3}{4}\)

    ∴ X1 = 0.75
  • Question 4
    1 / -0
    Only one of the real roots of f(x) lies in the interval 2 ≤ x ≤ 4 and bisection method is used to find its value. The minimum number of iterations required to achieve an accuracy of 0.2% is ______
    Solution

    Concept:

    In Bisection method, for f(x) = 0 in the interval (a, b), the interval width is reduced by a factor of one one-half at each step, at the end of the nth step, the new interval will be [an, bn] of length \(\frac{{\left| {b - a} \right|}}{{{2^n}}}\).

    The error, \(\varepsilon \ge \frac{{\left| {b - a} \right|}}{{{2^n}}}\) 

    Calculation:

    In the given question,

    a = 2, b = 4

    ε = 0.2% = 0.002

    \( \Rightarrow 0.002 \ge \frac{{\left| {4 - 2} \right|}}{{{2^n}}}\) 

    \(\Rightarrow 0.002 \ge \frac{2}{{{2^n}}}\) 

    2n ≥ 1000

    n ≥ 10

    The minimum number of iterations required are, n = 10

  • Question 5
    1 / -0
    Consider the first order initial value problem y’ + y = 0, y(0) = 1 for x = 0.1, the solution obtained using a single iteration  of the third order Runge Kutta method with step-size h = 0.1 is _________.
    Solution

    Concept:

    \(\frac{{dy}}{{dx}} = f\left( {x,y} \right),\;y\left( {{x_0}} \right) = {y_0}\)

    Runge-Kutta Method of first order:

    k1 = h f(x0, y0)

    y1 = y0 + k where k = k1 = h f (x0, y0)

    y2 = y1 + k where k = h f (x1, y1)

    Runge-Kutta Method of Second order:

    k1 = h f(x0, y0)

    k2 = h f (x0 + h, y0 + k1)

    \(k = \frac{{{k_1} + {k_2}}}{2}\)

    y1 = y0 + k

    Runge-Kutta Method of Third order:

    k1 = h f (x0, y0)

    \(\begin{array}{l} {k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right)\\ k' = hf\left( {{x_0} + h,{y_0} + {k_1}} \right) \end{array}\)  

    \(\begin{array}{l} {k_3} = hf\left( {{x_0} + h,{y_0} + k'} \right)\\ k = \frac{1}{6}\left( {{k_1} + 4{k_2} + {k_3}} \right) \end{array}\)  

    y1 = y0 + k

    Runge-Kutta Method of fourth order:

    k1 = h f (x0, y0)

    \(\begin{array}{l} {k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right)\\ {k_3} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_2}}}{2}} \right) \end{array}\)  

    \(\begin{array}{l} {k_4} = hf\left( {{x_0} + h,{y_0} + {k_3}} \right)\\ k = \frac{1}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right) \end{array}\)  

    y1 = y0 + k

    Calculation:

    Question is about third order Runge Kutta method with step-size h = 0.1.

    \(\frac{{dy}}{{dx}} = - y = f\left( {x,y} \right);{x_0} = 0,\;{y_0} = 1\)

    f(x0, y0 ) = f(0, 1) = -1

    k1 = h f (x0, y0) = 0.1 × (-1) = -0.1

    \({k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right) = hf\left( {0.05,\;0.95} \right)\)

    = 0.1 [-0.95] = -0.095

    k’ = h f (x0 + h, y0 + k1) = h f (0.1, 0.9) = =0.9 h

    k’ = -0.09

    k3 = h f (x0 + h, y0 + k’) = h f (0.1, 0.91) = -0.91 h

    k3 = -0.091

    \(\begin{array}{l} k = \frac{1}{6}\left( {{k_1} + 4{k_2} + {k_3}} \right)\\ = \frac{{ - 1}}{6}\left( {0.1 + 4\left( {0.095} \right) + 0.091} \right) = - 0.095167 \end{array}\)  

    y1 = y0 + k = 1 - 0.095167 = 0.9
  • Question 6
    1 / -0
    The equation 2x3 + 5x - 12 = 0 is to be solved numerically using Newton-Raphson method. If xk + 1 is 2% more than xk (where k represents the iteration level), then identify the correct option.
    Solution

    f(x) = 2x3 + 5x - 12

    fI(x) = 6x2 + 5

    \(\begin{array}{l} {{\rm{x}}_{{\rm{k}} + 1}} = {{\rm{x}}_{\rm{k}}} - \frac{{{\rm{f}}\left( {{{\rm{x}}_{\rm{k}}}} \right)}}{{{\rm{f'}}\left( {{{\rm{x}}_{\rm{k}}}} \right)}}\\ 1.02{{\rm{x}}_{\rm{k}}} = {{\rm{x}}_{\rm{k}}} - \frac{{(2{{\rm{x}}^3}_{\rm{k}} + 5{{\rm{x}}_{\rm{k}}} - 12)}}{{6{{\rm{x}}^2}_{\rm{k}} + 5}} \end{array}\)

    \(\begin{array}{l} 1.02{{\rm{x}}_{\rm{k}}} = \frac{{{{\rm{x}}_{\rm{k}}}{\rm{\;}}(6{{\rm{x}}^2}_{\rm{k}} + 5) - 2{{\rm{x}}^3}_{\rm{k}} - 5{{\rm{x}}_{\rm{k}}} + 12}}{{6{{\rm{x}}^2}_{\rm{k}} + 5}}\\ 1.02{{\rm{x}}_{\rm{k}}}(6{{\rm{x}}^2}_{\rm{k}} + 5) = {\rm{\;}}6{{\rm{x}}^3}_{\rm{k}} + 5{{\rm{x}}_{\rm{k}}} - 2{{\rm{x}}^3}_{\rm{k}} - 5{{\rm{x}}_{\rm{k}}} + 12 \end{array}\)

    \(\begin{array}{l} 6.12{{\rm{x}}^3}_{\rm{k}} + 5.1{{\rm{x}}_{\rm{k}}} = 6{{\rm{x}}^3}_{\rm{k}} - 2{{\rm{x}}^3}_{\rm{k}} + 12\\ 0.12{{\rm{x}}^3}_{\rm{k}} + 5.1{{\rm{x}}_{\rm{k}}} + 2{{\rm{x}}^3}_{\rm{k}} - 12 = 0\\ 2.12{{\rm{x}}^3}_{\rm{k}} + 5.1{{\rm{x}}_{\rm{k}}} - 12 = 0 \end{array}\)

  • Question 7
    1 / -0
    The evaluation of the definite integral \(\mathop \smallint \nolimits_{ - 1}^{1.4} x\left| x \right|dx\) by using Simpson’s 1/3rd (one –third) rule with step size h = 0.6 yields
    Solution

    Concept:

    \({\rm{Number\;of\;interval}} = \frac{{{\rm{b}} - {\rm{a}}}}{{\rm{h}}}{\rm{\;}}\)

    Where,

    b is the upper limit, a is the lower limit, h is the step size

    According to Simpson's \(\frac{1}{3}\) rule

    \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{3}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{n}}} + 2\left( {{{\rm{y}}_2} + {{\rm{y}}_4} + {\rm{\;}} \ldots } \right) + 4\left( {{{\rm{y}}_1} + {{\rm{y}}_3} + {\rm{\;}} \ldots } \right)} \right]\)

    Calculation:

    Given:

    f(x) = x|x|

    a = -1, b = 1.4, h = 0.6

    \({\rm{Number\;of\;interval}} = \frac{{1.4 - \left( { - 1} \right)}}{{0.6}} = 4\)

    Xn

    X= -1

    X= -0.4

    X2 = 0.2

    X3 = 0.8

    X4 = 1.4

    yn

    yo = -1

    y1 = -0.16

    y2 = 0.04

    y3 = 0.64

    y4 = 1.96

     

    According to Simpson's 1/3rd rule

    \(\mathop \smallint \limits_{ - 1}^{1.4} x\left| x \right|dx = \frac{{\rm{h}}}{3}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_4} + 2\left( {{{\rm{y}}_2}} \right) + 4\left( {{{\rm{y}}_1} + {{\rm{y}}_3}} \right)} \right]\)

    \(\mathop \smallint \limits_{ - 1}^{1.4} x\left| x \right|dx = \frac{{0.6}}{3}\left[ { - 1 + 1.96 + 2\left( {0.04} \right) + 4\left( { - 0.16 + 0.64} \right)} \right]{\rm{\;}}\)

    \(\therefore \mathop \smallint \limits_{ - 1}^{1.4} x\left| x \right|dx = 0.592{\rm{\;}}\)       

  • Question 8
    1 / -0
    In the differential equation \(\frac{{dy}}{{dx}} = \sqrt {{x^2} + {y^2}} ,y\left( 1 \right) = 2\) is solved using the Euler’s method with step size h = 0.1, then y2 is equal to (round off to 2 places of decimal)
    Solution

    Given that, \(y' = \frac{{dy}}{{dx}} = \sqrt {{x^2} + {y^2}} \)

    y(1) = 2 ⇒ y0 = 2, x0 = 1

    h = 0.1

    According to Euler’s method, \({y_{n + 1}} = {y_n} + hy'\left( {{x_n},{y_n}} \right)\)

    First iteration:

    y0 = 2, x0 = 1, h = 0.1

    \(y'\left( {{x_0},{y_0}} \right) = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)

    \({y_1} = {y_0} + hy'\left( {{x_0},{y_0}} \right) = 2 + 0.1\left( {\sqrt 5 } \right) = 2.22\)

    Second iteration:

    y1 = 2.22, x1 = x0 + h = 1 + 0.1 = 1.1, h = 0.1

    \(y'\left( {{x_1},{y_1}} \right) = \sqrt {{{1.1}^2} + {{2.2}^2}} = \sqrt 6 \)

    \({y_2} = {y_1} + hy'\left( {{x_1},{y_1}} \right) = 2.22 + 0.1\left( {\sqrt 6 } \right) = 2.46\)
  • Question 9
    1 / -0

    The root of equation 2x – log x = 7 by regula falsi method correct to three places of decimal is –

    Solution

    let f(x) = 2x – log x – 7

    Taking x0 = 3.5, x1 = 4, in the method of false position, we get

    \({x_2}\; = \;{x_0} - \frac{{\left( {{x_1} - {x_0}} \right)}}{{f\left( {{x_1}} \right) - f\left( {{x_0}} \right)}}f\left( {{x_0}} \right)\; = \;3.5 - \frac{{0.5}}{{0.3979 + 0.5441}}\left( { - 0.5441} \right)\)

    Since f(3.7888) = - 0.0009 and f(u) = 0.3979 therefore the root lies between 3.7888 and 4

    Taking x0 = 3.7888, x1 = 4 we obtain

    \({x_3}\; = \;3.7888 - \frac{{0.2112}}{{0.3988}}\left( { - 0.009} \right)\; = \;3.7893\)

    Hence the required root correct to three places of decimal is 3.789

  • Question 10
    1 / -0

    In the solution of the following set of linear equation by Gauss elimination using partial pivoting the pivots for the elimination of x and y are _______ respectively

    x + 4y – z = -5

    x + y – 6z = -12

    3x – y – z = 4
    Solution

    Concept:

    Partial pivoting and Complete pivoting: the numerically largest coefficient of x is chosen from all the equation and brought as the first pivot by interchanging the first equation with the equation having largest coefficient of x.

    In the second step numerically, largest coefficient of y is chosen from the remaining equation (leaving the first equation) and brought as the second pivot by interchanging the second equation with the equation having the largest coefficient of y’

    If we chose numerically largest coefficient of the entire matrix of coefficient, this requires not only an interchange of equations but also an interchange of the position of the variables. This method of elimination is called complete pivoting

    Calculation:

    In matrix form, the given system of equation can be written as

    Ax = B

    Augmented matrix for Gauss- eliminated is

    \(\left[ {\begin{array}{*{20}{c}} 1&4&{ - 1}\\ 1&1&{ - 6}\\ 3&{ - 1}&{ - 1} \end{array}\left| {\begin{array}{*{20}{c}} { - 5}\\ { - 12}\\ 4 \end{array}} \right.} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} 1&4&{ - 1}\\ 1&1&{ - 6}\\ 3&{ - 1}&{ - 1} \end{array}\left| {\begin{array}{*{20}{c}} { - 5}\\ { - 12}\\ 4 \end{array}} \right.} \right]\)

    In first column maximum element is 3.

    \(\left[ {\begin{array}{*{20}{c}} 3&{ - 1}&{ - 1}\\ 1&1&{ - 6}\\ 1&4&{ - 1} \end{array}\left| {\begin{array}{*{20}{c}} 4\\ { - 12}\\ { - 5} \end{array}} \right.} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} 3&{ - 1}&{ - 1\;}\\ 0&{4/3}&{\frac{{ - 17}}{3}}\\ 0&{13/3}&{ - 2/3} \end{array}\left| {\begin{array}{*{20}{c}} 4\\ { - 40/3}\\ { - 19/3} \end{array}} \right.} \right]\)

    Now to get the second pivot, find the largest coefficient in the second column which is 13/3

    \(\left[ {\begin{array}{*{20}{c}} 3&{ - 1}&{ - 1\;}\\ 0&{13/3}&{ - 2/3}\\ 0&0&{\frac{{ - 71}}{{13}}} \end{array}\left| {\begin{array}{*{20}{c}} 4\\ { - 19/3}\\ {\frac{{ - 178}}{{13}}} \end{array}} \right.} \right]\)

    \(\begin{array}{l} \frac{{ - 71}}{{13}}z = \frac{{ - 148}}{{13}} \Rightarrow z = 2.0845\\ \frac{{13}}{3}y - \frac{2}{3}z = \frac{{ - 19}}{3} \Rightarrow y = - 1.1408 \end{array}\)  

    3x – y – z = 4 ⇒ x = 1.6479

    So the pivot element for eliminating x & y are 3 and \(\frac{{13}}{3}\) respectively
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now