Concept:
i) Mid-Ordinate Rule
Area of plot = h1 × d + h2 × d + … + hn × d = d (h1 + h2 + … hn)
∴ Area = common distance × sum of mid-ordinates
ii) Average-Ordinate Rule
\(\text{Area}=\frac{{{\text{O}}_{1}}+{{\text{O}}_{2}}+\ldots +{{\text{O}}_{\text{n}}}}{{{\text{O}}_{\text{n}+1}}}\times \text{l}\)
\(\text{i}.\text{e}.\text{ }\!\!~\!\!\text{ Area}=\frac{\text{Sum }\;\!\!~\!\!\text{ of }\;\!\!~\!\!\text{ ordinates}}{\text{No}.\;\text{ }\!\!~\!\!\text{ of }\;\!\!~\!\!\text{ ordinates}}\times \text{length }\;\!\!~\!\!\text{ of }\;\!\!~\!\!\text{ base }\;\!\!~\!\!\text{ line}\)
(iii) Trapezoidal Rule
\(\text{Total }{area}=\frac{\text{d}}{2}\left\{ {{\text{O}}_{1}}+2{{\text{O}}_{1}}+2{{\text{O}}_{2}}+\ldots +2{{\text{O}}_{\text{n}-1}}+{{\text{O}}_{\text{n}}} \right\}\)
\(\text{Total }{ Area}=\frac{\text{Common }\;\!\!~\!\!\text{ distance}}{2}\times \{\left( 1\text{st }\!\!~\!\!\text{ ordinate}+\text{last }\!\!~\!\!\text{ ordinate} \right)+2\left( \text{sum }\!\!~\!\!\text{ of }\!\!~\!\!\text{ other }\!\!~\!\!\text{ ordinate} \right))\}\)
(iv) Simpson’s Rule
\(\text{Total }{ area}=\frac{\text{d}}{3}\left( {{\text{O}}_{1}}+4{{\text{O}}_{2}}+2{{\text{O}}_{3}}+4{{\text{O}}_{4}}+\ldots +{{\text{O}}_{\text{n}}} \right)\)
\(\text{Total }{ Area}=\frac{\text{Common }\;\!\!~\!\!\text{ Distance}}{3}\times \left\{ \left( 1\text{st }\!\!~\!\!\text{ ordinate}+\text{last }\!\!~\!\!\text{ ordinate} \right)+4\left( \text{sum }\!\!~\!\!\text{ of }\!\!~\!\!\text{ even }\!\!~\!\!\text{ ordinates} \right)+2\left( \text{sum }\!\!~\!\!\text{ of }\!\!~\!\!\text{ remaining }\!\!~\!\!\text{ odd }\!\!~\!\!\text{ ordinates} \right) \right\}\)
Calculation:
By using Trapezoidal rule:
d = 3m, 01 = 2m, 02 = 3.15 m …
\(\therefore A = d\left[ {\frac{{{0_1} + {0_n}}}{2} + {0_2} + {0_3} + \ldots } \right]\)
\( = 3\left[ {\frac{{2 + 3.14}}{2} + 4.3 + 3.60 + 7.50 + 6.45 + 4.65} \right]\)= 87.21 m2
Using Simpson’s Rule:
\(A = \frac{d}{3}\left[ {{O_1} + {O_n} + 4\left( {{O_2} + {O_4} + {O_6} + \ldots {O_{n - 1}}} \right) + 2\left( {{O_3} + {O_5}} \right)} \right]\)
\(= \frac{3}{3}\left[ {\left( {2 + .314} \right) + 4\left( {3.15 + 3.60 + 6.45} \right) + 2\left( {4.30 + 7.50 + 4.65} \right)} \right]\) = 90.84 m2