Concept:
Area of steel required will be:
\({A_{st\left( {req} \right)}} = \frac{{0.5{f_{ck}}}}{{{f_y}}}\left( {1 - \sqrt {1 - \frac{{4.6{M_u}}}{{{f_{ck}}b{d^2}}}} } \right) \times bd\)
Where,
Mu = ultimate moment of the slab, b = width of the slab, and d = effective depth of the slab,
fck and fy have usual meanings
Spacing of the bar = \(\frac{{1000}}{{{{\rm{A}}_{{\rm{st}}}}}} \times {{\rm{A}}_\phi }\)
Minimum Area of steel in slab = 0.12% of cross-sectional area of slab = 0.0012bd
Maximum spacing of main bar in slab = 3d or 300 mm whichever is lesser.
Calculation:
Mu = 37 kN-m, b = 1000 mm, and d = 400 mm
\({{\rm{A}}_{{\rm{st}}\left( {{\rm{req}}} \right)}} = \frac{{0.5 \times 25}}{{500}}\left( {1 - \sqrt {1 - \frac{{4.6 \times 37 \times {{10}^6}}}{{25 \times 1000 \times {{400}^2}}}} } \right)1000 \times 400 = 215{\rm{\;m}}{{\rm{m}}^2}/{\rm{m}}\)
But minimum Area of steel should be,
\({\rm{As}}{{\rm{t}}_{{\rm{min}}}} = \frac{{0.12}}{{100}} \times 1000 \times 400 = 480{\rm{m}}{{\rm{m}}^2}/{\rm{m}}\)
Hence the spacing of the bar should be,
\({{\rm{A}}_\phi } = \frac{{\rm{\pi }}}{4} \times 10 \times 10 = 78.54{\rm{\;m}}{{\rm{m}}^2}\)
\({\rm{Spacing}} = \frac{{1000}}{{480}} \times 78.54 = 163.62{\rm{\;mm}}\)
Check for spacing:
Maximum spacing should be lesser of 3d or 300 mm whichever is lesser.
∴ Spacing = 3 x 400 = 1200 mm or 300 mm whichever is lesser.
Hence provide 8ϕ -160 mm c/c main bar in the slab.