Concept:
The Froude’s number is given as:
\({F_r} = \frac{{{V^2}}}{{\sqrt {gD} }}\)
Where,
D is the hydraulic depth and it is given as D = A/T
Where A is the wetted area and T is the top width
For rectangular channel, A = By and T = B ⇒ D = (By)/B = y i.e. depth of flow
Now,
If Fr < 1 then flow is sub-critical.
If Fr > 1 then flow is supercritical.
If Fr = 1 then flow is critical.
As per, Manning’s formula, the velocity of flow for normal depth yn is given as:
\(V = \frac{1}{n}{R^{2/3}}{S^{1/2}}\)
Where,
R is the Hydraulic radius and it is given as R = A/P
(A is wetted area and P is wetted perimeter)
S is the bed slope or energy line slope.
Calculation:
Given: B = 4 m, S \(= \frac{1}{{5000}},\) Q = 30 m3/s, n = 0.012
\(V = \frac{1}{n}{\left( R \right)^{\frac{2}{3}}}\;{S^{\frac{1}{2}}}\)
\(R = \frac{A}{P} = \left( {\frac{{B{y_n}}}{{B + 2{y_n}}}} \right) = {y_n}\) (For wide rectangular channel)
Q = A V
\(Q = \left( {B{y_n}} \right)\frac{1}{n}{\left( {{y_n}} \right)^{\frac{2}{3}}}{S^{\frac{1}{2}}}\)
\( \Rightarrow Q = \left( {\frac{B}{n}{S^{\frac{1}{2}}}{\rm{\;}}} \right)\left( {y_n^{\frac{5}{3}}} \right)\)
\( \Rightarrow 30 = \left( {\frac{4}{{0.012}}} \right){\left( {\frac{1}{{5000}}} \right)^{\frac{1}{2}}}\left( {y_n^{\frac{5}{3}}} \right)\) ⇒ yn = 3.04 m
Now, velocity of flow, V
\(V = \frac{1}{n}{\left( {{y_n}} \right)^{\frac{2}{3}}}{S^{\frac{1}{2}}}\)
\( \Rightarrow V = \frac{1}{{0.012}} \times {\left( {3.04} \right)^{\frac{2}{3}}}{\left( {\frac{1}{{5000}}} \right)^{{V_2}}}\)
⇒ V = 2.47 m/s
D = yn (for rectangular channel)
\({F_r} = \frac{V}{{\sqrt {g{y_n}} }} = \frac{{2.47}}{{\sqrt {10\; \times \;3.04} }}\) ⇒ Fr = 0.447
Fr < 1 ⇒ Flow is sub-critical.