Self Studies

Fluid Mechanics Test 7

Result Self Studies

Fluid Mechanics Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At a hydraulic jump, the flow depths are 0.4 m and 5 m at the upstream and downstream, respectively. The channel is wide rectangular. The discharge per unit width is nearly
    Solution

    Concept:

    Hydraulic Jump: It is a phenomena associated with sudden rise in water depth when a flow with high velocity and low depth (supercritical flow) strikes another flow with low velocity and high depth (subcritical flow).

    For any hydraulic jump, the following relation always holds good:

    \({{\rm{y}}_1}{{\rm{y}}_2}\left( {{{\rm{y}}_1} + {{\rm{y}}_2}} \right) = \frac{{2{{\rm{q}}^2}}}{{\rm{g}}}\)

    Where, y1 and y2 are the depths before and after the hydraulic jump respectively.

    q is discharge per unit width and g is acceleration due to gravity.

    Calculation:

    Given, upstream depth which is depth before hydraulic jump = y1 = 0.4 m.

    Downstream depth which is depth after hydraulic jump = y2 = 5 m.

    Acceleration due to gravity = g = 9.81 m/s2.

    \(\therefore {{\rm{q}}^2} = \frac{{{{\rm{y}}_1}{{\rm{y}}_2}\left( {{{\rm{y}}_1} + {{\rm{y}}_2}} \right) \times {\rm{g}}}}{2} = \frac{{0.4 \times 5 \times \left( {0.4 + 5} \right) \times 9.81}}{2} = 52.974{\rm{\;}}\therefore {\rm{q}} = 7.278\frac{{{{\rm{m}}^2}}}{{\rm{s}}} \approx 7.3{\rm{\;}}\frac{{{{\rm{m}}^2}}}{{\rm{s}}}{\rm{\;}}\)

    ∴ The discharge per unit width is nearly 7.3 m2/s. 

  • Question 2
    1 / -0
    What would be the critical velocity (in m/s, up to two decimal places) of the water flowing through a rectangular channel of width 10 m, when discharge is 20 m3/s? Take g = 10 m/s2.
    Solution

    Concept:

    The flow is said to be critical, if it satisfies the following equation irrespective of the type of channel:

    \(\frac{{{Q^2}T}}{{g{A^3}}} = 1\)

    Where,

    Q is the discharge

    T is the top width of channel

    A is the wetted area of channel

    Calculation:

    Let yc is the critical depth of flow

    Wetted area, A = Byc

    Given: Q = 20 m3/s, B = 10 m, g = 10 m/s2

    Top width, T = B = 10 m

    We know that: \(\frac{{{Q^2}T}}{{g{A^3}}} = 1\)

    \( \Rightarrow \frac{{{{\left( {20} \right)}^2}\; \times \;10}}{{10\; \times\; {{\left( {10\; \times\; {y_c}} \right)}^3}}} = 1 \Rightarrow {y_c} = 0.736\;m\) 

    Critical velocity of flow, \({V_c} = \frac{Q}{A} = \left( {\frac{{20}}{{10\; \times \;0.736}}} \right)\)

    ⇒ Vc = 2.72 m/s

  • Question 3
    1 / -0
    While conducting the flow measurement using a triangular notch, an error of +2% in head over the notch is observed. The percentage error in the computed discharge would be 
    Solution

    Concept:

    For a triangular notch

    \({\rm{Q\;}} = {\rm{\;}}\frac{8}{{15}}{{\rm{c}}_{\rm{d}}}\sqrt {2{\rm{g}}} \tan \frac{{\rm{\theta }}}{2} \times {{\rm{H}}^{3/2}}\)

    Where,

    Q = Dischange, Cd = co-eff of discharge, H = Head above the bottom of notch, and θ = enclosed angle

    Calculation:

    Differentiating equation w.r.t. H, we have

    \(\frac{{{\rm{dQ}}}}{{{\rm{dH}}}}{\rm{\;}} = {\rm{\;}}\frac{8}{{15}}{{\rm{c}}_{\rm{d}}}\sqrt {2{\rm{g}}} \tan \frac{{\rm{\theta }}}{2} \times \frac{5}{2}{{\rm{H}}^{3/2}}\)

    \({\rm{dQ\;}} = {\rm{\;}}\frac{8}{{15}}{{\rm{c}}_{\rm{d}}}\sqrt {2{\rm{g}}} \tan \frac{{\rm{\theta }}}{2} \times \frac{2}{2}{{\rm{H}}^{\frac{3}{2}}} \times {\rm{dH}}\)

    \(\frac{{{\rm{dQ}}}}{{\rm{Q}}}{\rm{\;}} = {\rm{\;}}\frac{{\frac{8}{{15}}{{\rm{c}}_{\rm{d}}}\sqrt {2{\rm{g}}} \tan \frac{{\rm{\theta }}}{2} \times \frac{3}{2}{{\rm{H}}^{3/2}} \times {\rm{dH}}}}{{\frac{8}{{15}}{{\rm{c}}_{\rm{d}}}\sqrt {2{\rm{g}}} \tan \frac{{\rm{\theta }}}{2} \times {{\rm{H}}^{3/2}}}}{\rm{\;}} = {\rm{\;}}\frac{5}{2}\frac{{{\rm{dH}}}}{{\rm{H}}}\)

    \(\therefore \frac{{{\rm{dQ}}}}{{\rm{Q}}}{\rm{\;}} = {\rm{\;}}\frac{5}{2}\frac{{{\rm{dH}}}}{{\rm{H}}}{\rm{\;}} = {\rm{\;}}2.5{\rm{\;}}\frac{{{\rm{dH}}}}{{\rm{H}}}\)

    Given error in head \( = {\rm{}}\frac{{{\rm{dH}}}}{{\rm{H}}}{\rm{}} = {\rm{}}2{\rm{\% }}\)

    So, \(\frac{{{\rm{dQ}}}}{{\rm{Q}}}{\rm{}} = {\rm{}}2.5 \times 2{\rm{}} = {\rm{}}5{\rm{\% }}\)

    Important Points:

    Discharge over a rectangular notch

    \({\rm{Q}} = {\rm{}}{{\rm{C}}_{\rm{d}}}\frac{2}{3}{\rm{B\;}}\sqrt {2{\rm{g}}} {{\rm{H}}^{3/2}}\)

    Where,

    Q = discharge, Cd = co-eff discharge, B = width of notch, and H = Head above the bottom of notch
  • Question 4
    1 / -0

    A wide rectangular channel 4 m wide and normal bed slope 1 in 5000 conveys a constant discharge of 30.0 m3/s. Let the normal depth of flow at a particular section is yn.  Assume Manning’s n = 0.012. Which of the following is correct? 

    Solution

    Concept:

    The Froude’s number is given as:

    \({F_r} = \frac{{{V^2}}}{{\sqrt {gD} }}\)

    Where,

    D is the hydraulic depth and it is given as D = A/T

    Where A is the wetted area and T is the top width

    For rectangular channel, A = By and T = B ⇒ D = (By)/B = y i.e. depth of flow

    Now,

    If Fr < 1 then flow is sub-critical.

    If F­r > 1 then flow is supercritical.

    If Fr = 1 then flow is critical.

    As per, Manning’s formula, the velocity of flow for normal depth yn is given as:

    \(V = \frac{1}{n}{R^{2/3}}{S^{1/2}}\)

    Where,

    R is the Hydraulic radius and it is given as R = A/P

    (A is wetted area and P is wetted perimeter)

    S is the bed slope or energy line slope.

    Calculation:

    Given: B = 4 m, S \(= \frac{1}{{5000}},\) Q = 30 m3/s, n = 0.012

    \(V = \frac{1}{n}{\left( R \right)^{\frac{2}{3}}}\;{S^{\frac{1}{2}}}\)

    \(R = \frac{A}{P} = \left( {\frac{{B{y_n}}}{{B + 2{y_n}}}} \right) = {y_n}\)                                   (For wide rectangular channel)

    Q = A V

    \(Q = \left( {B{y_n}} \right)\frac{1}{n}{\left( {{y_n}} \right)^{\frac{2}{3}}}{S^{\frac{1}{2}}}\)

    \( \Rightarrow Q = \left( {\frac{B}{n}{S^{\frac{1}{2}}}{\rm{\;}}} \right)\left( {y_n^{\frac{5}{3}}} \right)\)

    \( \Rightarrow 30 = \left( {\frac{4}{{0.012}}} \right){\left( {\frac{1}{{5000}}} \right)^{\frac{1}{2}}}\left( {y_n^{\frac{5}{3}}} \right)\) ⇒ yn = 3.04 m

    Now, velocity of flow, V

    \(V = \frac{1}{n}{\left( {{y_n}} \right)^{\frac{2}{3}}}{S^{\frac{1}{2}}}\)

    \( \Rightarrow V = \frac{1}{{0.012}} \times {\left( {3.04} \right)^{\frac{2}{3}}}{\left( {\frac{1}{{5000}}} \right)^{{V_2}}}\)

    ⇒ V = 2.47 m/s

    D = yn (for rectangular channel)

    \({F_r} = \frac{V}{{\sqrt {g{y_n}} }} = \frac{{2.47}}{{\sqrt {10\; \times \;3.04} }}\) ⇒ Fr = 0.447

    Fr < 1 ⇒ Flow is sub-critical.

  • Question 5
    1 / -0

    What would be the specific force (in kN m3/kN, up to two decimal places) for a triangular channel of apex angle 90°  and top width of 2 m if the water is flowing at the rate of 10 m3/s in the channel?  Take g = 10 m/s2.

    Solution

    Concept

    The specific force for a channel is given as,

    \(F = A\bar Z + \;\frac{{{Q^2}}}{{Ag}}\)

    Where,

    A is the wetted area

    Q is the discharge in the channel

    Z̅ is the centroid of the channel section measured from the top of the channel.

    Calculation

    Given:

    Q = 10 m3/s; B = 2 m

    tan 45° = y/1 ⇒ y = 1 m

    \(\bar Z = \frac{1}{3}y = \frac{1}{3} \times 1 = 0.33\;m\)

    Wetted area, A \(= \frac{1}{2} \times 2 \times 1 = 1\;{m^2}\)

    \(\Rightarrow {F_s} = A\bar Z + \frac{{{Q^2}}}{{Ag}}\)  \(= \left( {1 \times 0.67} \right) + \frac{{{{\left( {10} \right)}^2}}}{{1\; \times \;10}}\) 

    ⇒ Fs = 10.33 kN m3/kN

  • Question 6
    1 / -0
    For a constant specific energy of 3.0 N-m/N, what would be the maximum discharge that may be possible in a rectangular channel of 2 m width? Take g = 10 m/s2.
    Solution

    Concept

    For a constant specific energy, the discharge will be maximum when flow is critical and it satisfies the following condition:

    \(\frac{{{Q^2}T}}{{g{A^3}}} = 1\)

    Where,

    Q is the discharge

    T is the top width of channel

    A is the wetted area of channel

    Specific energy under critical conditions for a given critical depth yc is given as:

    \({E_c} = {y_c} + \;\frac{{{V^2}}}{{2g}}\)

    Where,

    V is the velocity of flow

    yc is the depth flow at a particular section

     Calculation:

    Given: Ec = 3 m, B = 2 m

    \({E_c} = {y_c} + \frac{{{V^2}}}{{2g}}\) 

    \({E_c} = {y_c} + \frac{{{{\left( {\frac{Q}{{B{y_c}}}} \right)}^2}}}{{2g}}\) 

    \({E_c} = {y_c} + \frac{{{Q^2}}}{{{B^2}y_c^2\left( {2g} \right)}}\)     …1)

    For critical flow,

    \(\frac{{{Q^2}T}}{{g{A^3}}} = 1\) ⇒ \(\frac{{{Q^2}B}}{{g{{\left( {B{y_c}} \right)}^3}}} = 1\) 

    \(\Rightarrow \frac{{{Q^2}}}{{y_c^2}} = g{B^2}{y_c}\)      …2)

    Substitute the value of \(\frac{{{Q^2}}}{{y_c^2}}\) in equation 1)

    \({E_c} = {y_c} + \frac{{g{B^2}{y_c}}}{{2g{B^2}}}\) 

    \( \Rightarrow {E_c} = {y_c} + \frac{{{y_c}}}{2} = \frac{3}{2}{y_c}\) 

    \( \Rightarrow 3 = \frac{3}{2} \times {y_c} \Rightarrow {y_c} = 2\;m\) 

    Substitute yc = 2 m in equation 2)

    \(\frac{{{Q^2}}}{{{{\left( 2 \right)}^2}}} = 10 \times {\left( 2 \right)^2} \times {\left( 2 \right)^3}\) 

    ⇒ Q = 17.89 m3/s

    ∴ The maximum discharge is 17.89 m3/s

  • Question 7
    1 / -0

    A rectangular channel of width 2 m is provided with hydraulic jump as an energy dissipator device at its downstream side.  It dissipates an energy equivalent to 2 m of water. Assume that energy dissipation is only due to hydraulic jump and there is no other loss in energy. The Froude number before the jump is 10 .  What would be the sequent depth (post jump depth) (in m, up to two decimal places) ?  

    Solution

    Concept

    The energy loss due to hydraulic jump is given as:

    \(E = \;\frac{{{{\left( {{y_2} - {y_1}} \right)}^3}}}{{4{y_1}{y_2}}}\)

    Where,

    y1 is the pre jump depth

    y2 is the post jump depth

    The relation between pre and post jump depth is given as,

    \(\frac{{{y_2}}}{{{y_1}}} = \frac{1}{2}\left\{ { - 1 + \;\sqrt {1 + 8F_1^2} } \right\}\)

    Where,

    F1 is the Froude number before jump.

    Calculation:

    Given: F1 = 10, B = 2 m

    Let y2 = Ky1

    \(\frac{{{y_2}}}{{{y_1}}} = \frac{1}{2}\left( { - 1 + \sqrt {1 + 8F_1^2} } \right)\) 

    \(\frac{{{y_2}}}{{{y_1}}} = K = \frac{1}{2}\left( { - 1 + \sqrt {1 + 8 \times {{10}^2}} } \right)\) 

    ⇒ K = 13.65

    Energy loss is,

    \(E = \frac{{{{\left( {{y_2} - {y_1}} \right)}^3}}}{{4{y_1}{y_2}}}\) 

    \( \Rightarrow 2 = \frac{{{{\left( {K{y_1} - {y_1}} \right)}^3}}}{{\left( {4{y_1}} \right)\; \times \;\left( {K{y_1}} \right)}}\) 

    \( \Rightarrow 2 = \frac{{{{\left( {K - 1} \right)}^3}{y_1}}}{{4\;K}}\) 

    Putting K = 13.65 in above,

    \( \Rightarrow 2 = \left( {\frac{{{{\left( {13.65\; - \;1} \right)}^3}}}{{4\; \times \;13.65}}} \right) \times {y_1}\) 

    ⇒ y1 = 0.054 m

    Now, y2 = K y1 = 13.65 × 0.054 = 0.736 m

    y2 = 0.74 m

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now