How many functions does f1.f2 and f1 + f2 represents respectively if the given function is
\({\rm{f}}1{\left( {{\rm{a}},{\rm{b}},{\rm{c}}} \right)_{}} = \mathop \sum \nolimits_M \;\left( {0,{\rm{\;}}1,{\rm{\;}}4} \right) + {\rm{\;}}\mathop \sum \limits_\emptyset \left( {3,{\rm{\;}}5,{\rm{\;}}7} \right)\)
\({\rm{f}}2\left( {{\rm{a}},{\rm{b}},{\rm{c}}} \right) = \mathop \sum \nolimits_M \;\left( {2,3} \right) + {\rm{\;}}\mathop \sum \limits_\emptyset \left( {1,{\rm{\;}}6,{\rm{\;}}7} \right)\)
where ∑
m represents sum of min-terms and ∑
ϕ represents and don’t care