Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    Let X be an exponential random variable with rate parameter λ . Then find the variance of X.
    Solution

    Probability density function: f(x) =  λ.e- λx , x>0

    Formula: Var(X) = E(X2) – [E(X)]2

    E(X) = \(\mathop \smallint \nolimits_0^\infty x.f\left( x \right).dx\)

    E(X) = \(\mathop \smallint \nolimits_0^\infty x{\rm{\lambda }}.{e^{ - {\rm{\lambda x}}}}.dx\)

    E(X) = \(\frac{1}{{\rm{\lambda }}}\)

    E(X2) = \(\mathop \smallint \nolimits_0^\infty {x^2}.f\left( x \right).dx\)

    E(X2) = \(\mathop \smallint \nolimits_0^\infty {x^2}{\rm{\lambda }}.{e^{ - {\rm{\lambda x}}}}.dx\)

    E(X2) = \(\frac{2}{{{\rm{\;}}{{\rm{\lambda }}^2}}}\)

    Now, put both the values in the variance formula

    Var(X) = E(X2) – [E(X)]2

    Var(X) = \(\frac{2}{{{\rm{\;}}{{\rm{\lambda }}^2}}}\)  - \({\left( {\frac{1}{{\rm{\lambda }}}} \right)^2}\) = \(\frac{2}{{{\rm{\;}}{{\rm{\lambda }}^2}}}\) - \(\frac{1}{{{\rm{\;}}{{\rm{\lambda }}^2}}}\)

    Var(X) = \(\frac{1}{{{\rm{\;}}{{\rm{\lambda }}^2}}}\)

  • Question 2
    2 / -0.33

    What is the determinant of A?

    \(A = \;\left| {\begin{array}{*{20}{c}} 3&1&1&1&1\\ 1&3&1&1&1\\ 1&1&3&1&1\\ 1&1&1&3&1\\ 1&1&1&1&3 \end{array}} \right|\)

    Solution

    \(\left| A \right| = \;\left| {\begin{array}{*{20}{c}} 3&1&1&1&1\\ 1&3&1&1&1\\ 1&1&3&1&1\\ 1&1&1&3&1\\ 1&1&1&1&3 \end{array}} \right|\)

    R1 ↔ R5

    \(\left| A \right| = \; - \left| {\begin{array}{*{20}{c}} 1&1&1&1&3\\ 1&3&1&1&1\\ 1&1&3&1&1\\ 1&1&1&3&1\\ 3&1&1&1&1 \end{array}} \right|\)

    R2 → R2 – R1

    R3 → R3 – R1

    R4 → R4 – R1

    R5 → R5 – 3R1

    \(\left| A \right| = \; - \left| {\begin{array}{*{20}{c}} 1&1&1&1&3\\ 0&2&0&0&{ - 2}\\ 0&0&2&0&{ - 2}\\ 0&0&0&2&{ - 2}\\ 0&{ - 2}&{ - 2}&{ - 2}&{ - 8} \end{array}} \right|\)

    R5 → R5 + R2 + R3 + R4

    \(\left| A \right| = - \left| {\begin{array}{*{20}{c}} 1&1&1&1&3\\ 0&2&0&0&{ - 2}\\ 0&0&2&0&{ - 2}\\ 0&0&0&2&{ - 2}\\ 0&0&0&0&{ - 14} \end{array}} \right|\)

    Since it is a diagonal matrix it’s determinant is the product of diagonal element

    \(\left| A \right| = - \left( {1 \times 2 \times 2 \times 2 \times - 14} \right)\)

    \(\left| A \right| = 112\)

  • Question 3
    2 / -0.33

    Consider the given set of equations:

    x + y = 1

    y + z = 1

    x + z = 1

    Which one of the following statement is/are true regarding given set of equations:
    Solution

    x + y = 1

    y + z = 1

    x + z = 1

    \(A = \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 0&1&1\\ 1&0&1 \end{array}} \right]B = \left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right]\)

    \(\left[ {A\;:B} \right] = \left[ {\begin{array}{*{20}{c}} 1&1&0&1\\ 0&1&1&1\\ 1&0&1&1 \end{array}} \right]\)

    R3 → R3 – R1

    \(= \left[ {\begin{array}{*{20}{c}} 1&1&0&1\\ 0&1&1&1\\ 0&{ - 1}&1&0 \end{array}} \right]\)

    R3 → R3 + R2

    \(= \left[ {\begin{array}{*{20}{c}} 1&1&0&1\\ 0&1&1&1\\ 0&0&2&1 \end{array}} \right]\)

    Rank (A) = Rank (A : B) = n

    So, given equations are consistent and a single non trivial solution exists.
  • Question 4
    2 / -0.33
    Which one of the following does NOT equal \(\left| {\begin{array}{*{20}{c}}1&x&{{x^2}}\\1&y&{{y^2}}\\1&z&{{z^2}}\end{array}} \right|\)?
    Solution

    Concepts:

    1. Switching two rows or columns causes the determinant to switch sign
    2. Adding a multiple of one row/column to another row/column causes the determinant to remain the same

    Calculations:

    Now we can use the above concepts to determine the answer.

    For options 1.

    \(\left| {\begin{array}{*{20}{c}}1&{x\left( {x + 1} \right)}&{x + 1}\\1&{y\left( {y + 1} \right)}&{y + 1}\\1&{z\left( {z + 1} \right)}&{z + 1}\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&{{x^2} + x}&{x + 1}\\1&{{y^2} + y}&{y + 1}\\1&{{z^2} + z}&{z + 1}\end{array}} \right|\)

    \(c3 \to c3 - c1.\)

    \(\left| {\begin{array}{*{20}{c}}1&{{x^2} + x}&x\\1&{{y^2} + y}&y\\1&{{z^2} + z}&z\end{array}} \right|\)

    \({\rm{c}}2 \to {\rm{c}}2 - {\rm{c}}3\)

    \(\left| {\begin{array}{*{20}{c}}1&{{x^2}}&x\\1&{{y^2}}&y\\1&{{z^2}}&z\end{array}} \right|\)

    Since,

    \(\left| {\begin{array}{*{20}{c}}1&{{x^2}}&x\\1&{{y^2}}&y\\1&{{z^2}}&z\end{array}} \right| = \; - \;\left| {\begin{array}{*{20}{c}}1&x&{{x^2}}\\1&y&{{y^2}}\\1&z&{{z^2}}\end{array}} \right|\)

    Therefore, switching two rows or columns causes the determinant to switch sign

    \(\left| {\begin{array}{*{20}{c}}1&{{x^2}}&x\\1&{{y^2}}&y\\1&{{z^2}}&z\end{array}} \right| \ne \left| {\begin{array}{*{20}{c}}1&x&{{x^2}}\\1&y&{{y^2}}\\1&z&{{z^2}}\end{array}} \right|\) 

    Therefore option 1 correct

  • Question 5
    2 / -0.33
    Consider a matrix Mn×n, the two eigenvalues of the matrix are 12 and 6 + √-1). If n is equal to three then what is the determinant of M?
    Solution

    Concept:

    Determinant matrix M = product of its eigenvalues

    Calculation:

    Since it is 3 × 3 matrix, so roots will be 3 means 3 eigenvalues. Two eigenvalues are given as 12 and 6 + √-1)

    As 3 × 3 is a real matrix, in real matrix roots can never be imaginary. We have to take the complex roots in pair. So,

    Three eigenvalues are:

    12, (6 + √-1) and (6 - √-1), that is, 12, (6 + i) and (6 - i)

    Determinant matrix M = 12 × (6 + i) ×  (6 - i) = 444

    Important point: 

    √-1 = i → iota (imaginary number)

  • Question 6
    2 / -0.33
    The rank of the matrix, \(M = \left[ {\begin{array}{*{20}{c}} 0&1&1\\ 1&0&1\\ 1&1&0 \end{array}} \right]\), is _________.
    Solution

    \(M = \left[ {\begin{array}{*{20}{c}} 0&1&1\\ 1&0&1\\ 1&1&0 \end{array}} \right]\)

    Determinant = 0 – 1 (-1) + 1 (1) = 2 ≠ 0

    So, the rank of M is 3

    Alternate method:

    \(M = \left[ {\begin{array}{*{20}{c}} 0&1&1\\ 1&0&1\\ 1&1&0 \end{array}} \right]\)

    R3 ↔ R1

    \(\sim \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 1&0&1\\ 0&1&1 \end{array}} \right]\)

    R2 → R2 – R1

    \(\sim \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 0&{ - 1}&1\\ 0&1&1 \end{array}} \right]\)

    R3 → R3 + R2

    \(\sim \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 0&{ - 1}&1\\ 0&0&2 \end{array}} \right]\)

    Now it is in the Echelon form

    Rank = number of non-zero rows = 3

  • Question 7
    2 / -0.33
    For what values of a and b, the system of equation x + 2y + z = 6, x + 4y + 3z = 10, x + 4y + az = b has no solution
    Solution

    Explanation:

    The augmented matrix of the system is

    \(\left[ {A\;/\;B} \right] = \left[ {\begin{array}{*{20}{c}}1&2&1&6\\1&4&3&{10}\\1&4&a&d\end{array}} \right]\) 

    R2 – R1. R3 – R1

    \( \sim \left[ {\begin{array}{*{20}{c}}1&2&1&6\\0&2&2&4\\0&2&{a - 1}&{b - 6}\end{array}} \right]\) 

    R3 – R2

    \( \sim \left[ {\begin{array}{*{20}{c}}1&2&1&6\\0&2&2&4\\0&0&{a - 3}&{b - 10}\end{array}} \right]\) 

    The system has no solution, if a = 3 and b ≠ 10

  • Question 8
    2 / -0.33

    If probability density function of a random variable x is

    f(x) = x2 for -1 ≤ x ≤ 1, and

    = 0 for any other value of x

    Then, the percentage probability P\(\left( { - \frac{1}{3}\; \le x\; \le \;\frac{1}{3}} \right)\) is

    Solution

    Given:  f(x) = x2 for -1 ≤ x ≤ 1, and

    = 0 for any other value of x

    \(\left( { - \frac{1}{3}\; \le x\; \le \;\frac{1}{3}} \right)\)\(\mathop \smallint \nolimits_{ - \frac{1}{3}}^{\frac{1}{3}} f\left( x \right)dx\)

    = \(\mathop \smallint \nolimits_{ - \frac{1}{3}}^{\frac{1}{3}} \;{x^2}dx\) 

    \(\left| {\frac{{{x^3}}}{3}} \right|_{ - 1/3}^{ + 1/3}\)

    \(\frac{2}{{81}}\)

    The probability expressed in percentage,

    P = \(\frac{2}{{81}} \times 100\) = 2.469 %

    Hence, P = 2.47 %

  • Question 9
    2 / -0.33
    Consider the function f(x) = \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{4x^2}}}{{\left( {\cos 8x - cos4x} \right)}}\;\). What is the value of 18× f(x)?
    Solution

    Using L Hospital’s

    \(f\left( x \right) =\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{4x^2}}}{{\left( {\cos 8x - cos4x} \right)}}\;\)

    \(=4 \mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{2x}}}{{\left( {-8sin 8x + 4sin4x} \right)}}\;?\)

    \(= 4\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{2}{{\left( { - 64 × cos8x + 16cos4x} \right)}}\)

    \(= \frac{8}{{ - 64 + 16}} = \frac{8}{-48} = -\frac{1}{6}\)

    18× f(x) = 18 × -1/6 = -3

  • Question 10
    2 / -0.33
    Let \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right)\) then which of the following statements is/are true?
    Solution

    Concept:

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigenvalues or latent roots or characteristic roots of matrix A.

    Eigenvector (X) that corresponding to Eigenvalue (λ) satisfies the equation AX = λX.

    Properties of Eigenvalues:

    The sum of Eigenvalues of a matrix A is equal to the trace of that matrix A

    The product of Eigenvalues of a matrix A is equal to the determinant of that matrix A

    Calculation:

    \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right)\)

    The given matrix is triangular.

    Therefore, Eigenvalues = diagonal elements

    = 1, 1

    As the Eigenvalues are not unique, it is not diagonalizable.

    Determinant of A = 1 ≠ 0

    Therefore A is non-singular

    To get Eigenvector,

    Ax = λx

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = 1\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} {{x_1} - {x_2}}\\ {{x_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    ⇒ x2 = 0 and x1 can be any value.

    The Eigenvector is \(\left[ {\begin{array}{*{20}{c}} k\\ 0 \end{array}} \right]\) 

    Therefore, the given vector is Eigenvector.

  • Question 11
    2 / -0.33

    Consider two events X and Y. X and Y are independent events and both are equally likely events. If the probability of having X or Y is \(\frac{3}{4}\) then what is the probability of Y?

    NOTE:
    Answer up to 2 decimal places

    Solution

    Probability of (X or Y) = P(X ∪ Y)  = \(\frac{3}{4} \)

    Formula: 

    P(X ∪ Y) = P(X) + P(Y) – P(X ∩ Y)

    Two events are independent

    P(X ∩ Y) = P(X).P(Y)

    The two events are equally likely

    P(X) = P(Y) = p

    P(X ∪ Y) = p + p – p.p

    ∴ \(\frac{3}{4} \) = 2p – p2 

    3 = 8p  – 4p2

    4p2 – 8p + 3 = 0

    4p2 – 6p - 2p + 3 = 0

    2p (2p - 3) - (2p - 3) = 0

    (2p - 3)(2p - 1)

    \(\therefore p = \frac{1}{2}~or~\frac{3}{2}\)

    Since p  is always ≤ 1

    \(\therefore p = \frac{1}{2} = 0.5\)

    the probability of Y is 0.5

  • Question 12
    2 / -0.33

    In the LU decomposition of the matrix \(\left[ {\begin{array}{*{20}{c}} 2&2\\ 4&9 \end{array}} \right]\).The diagonal elements of U are both 1 and U12 is p, and the elements of L are x, 0, z and y in row major order. Which of the following is/are true?

    Solution

    Given \(LU\; = \;\left[ {\begin{array}{*{20}{c}} 2&2\\ 4&9 \end{array}} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} x&0\\ z&y \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&p\\ 0&1 \end{array}} \right]\; = \;\left[ {\begin{array}{*{20}{c}} 2&3\\ 4&9 \end{array}} \right]\)

    \(\;\left[ {\begin{array}{*{20}{c}} x&xp\\ z&zp + y \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 2&2\\ 4&9 \end{array}} \right]\)

    z = 4

    x = 2,

    xp = 2 

    ∴ p = 1

    z = 4

    zp + y = 9

    (4)(1) + y = 9

    y = 9 - 4

    ∴ y = 5

  • Question 13
    2 / -0.33
    f(x) and g(x) are two functions differentiable in [0,1] such that f(0) = 2; g(0) = 0; f(1) = 6; and g(1) = 2. Then there must exist a constant c in ?
    Solution

    Here, we have assume some function by checking options to solve these kind of questions

    Consider the function φ(x) = f(x) – 2 g(x)

    φ(0) = φ(1) = 2,

    So, f(x) satisfies the conditions of Roll’s theorem in [0, 1]

    Hence, φ’(x) = f’(x) – 2g’(x) has at least one 0 at in (0,1)

    i.e, φ’(c) = 0

    f’(c) – 2g’(c) = 0

    f’(c) = 2g’(c)

    Hence, There must exist a constant c in (0, 1), such that f’(c) = 2g’(c)

  • Question 14
    2 / -0.33
    Find the eigen vector corresponding to Largest eigen value of matrix A = \(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&1\\ 1&{ - 1}&1\\ { - 1}&1&1 \end{array}} \right]\)
    Solution

    Using characteristic equation | A - λI| = 0, we get

    (1-λ) (λ2-2) + (2-λ) – λ = -λ3 + λ2 = 0

    Hence, λ = 0, λ = 1

    The largest eigen value is 1, so we calculate the eigen vector corresponding to eigen value 1.

    A – I = \(\left[ {\begin{array}{*{20}{c}} 0&{ - 1}&1\\ 1&{ - 2}&1\\ { - 1}&1&0 \end{array}} \right]\) , R1↔ R2

    = \(\left[ {\begin{array}{*{20}{c}} 1&{ - 2}&1\\ 0&{ - 1}&1\\ { - 1}&1&0 \end{array}} \right]\) , R3 ← R2 + R1

    = \(\left[ {\begin{array}{*{20}{c}} 1&{ - 2}&1\\ 0&{ - 1}&1\\ 0&{ - 1}&1 \end{array}} \right]\) , R3 ← R3 + R2

    = \(\left[ {\begin{array}{*{20}{c}} 1&{ - 2}&1\\ 0&{ - 1}&1\\ 0&0&0 \end{array}} \right]\) , R1 ← R1 + 2R2

    = \(\left[ {\begin{array}{*{20}{c}} 1&0&1\\ 0&{ - 1}&1\\ 0&0&0 \end{array}} \right]\) 

    [ A – I] \(\vec x\) = 0

    x1 – x3 = 0, x1 = x3

    -x2 + x3 = 0, x2 = x3

    \(\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{x_3}}\\ {{x_3}}\\ {{x_3}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right]{x^3}\)

    Vector corresponding to eigen value 1 is \(\vec x\) = \(\left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right]\)

  • Question 15
    2 / -0.33

    Consider two candidates A and B are considering applying for a job. The probability that A applies for the job is \(\frac{3}{5}\), the probability that A applies for the job given that B applies for the job is \(\frac{4}{5}\), and the probability that B applies for the job given that A applies for the job is \(\frac{2}{3}\). What is the probability that A does not apply for the job given that B does not apply for the job?

    NOTE:

    Answer up to 2 decimal places

    Solution

    Data:  

    \(p\left( A \right) = \frac{3}{5}\)

    \(P\left( {\frac{A}{B}} \right) = \;\frac{4}{5}\) , \(P\left( {\frac{B}{A}} \right) = \;\frac{2}{3}\)

    Formula

    \(P\left( {\frac{B}{A}} \right) = \;\frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\)

    Calculation:

    \(\frac{2}{3} = \;\frac{{P\left( {A \cap B} \right)}}{{\frac{3}{5}}}\)  , 

    \(P\left( {A \cap B} \right) = \;\frac{2}{{5}}\)

    Also, \(P\left( {\frac{A}{B}} \right) = \frac{{A\;\left( {A \cap B} \right)}}{{P\left( B \right)}},\;\;\)

    \(\frac{4}{5} = \frac{{\frac{2}{{5}}}}{{P\left( B \right)}}\) ,

    \(P\left( B \right) = \frac{1}{2}\)

    Required probability, \(P\left( {\frac{{A'}}{{B'}}} \right) = \frac{{P\left( {A' \cap B'} \right)}}{{P\left( {B'} \right)}}\)

    \(= \frac{{P{{\left( {A \cup B} \right)}'}}}{{1 - P\left( B \right)}}\; = \frac{{1 - P\left( {A \cup B} \right)}}{{1 - P\left( B \right)}}\)

    \(= \frac{{1 - \left( {P\left( A \right) + P\left( B \right) - P\;\left( {A \cap B} \right)} \right)}}{{1 - P\left( B \right)}}\;\)

    \(= \frac{{1 - \left( {\frac{3}{5} + \frac{1}{2} - \frac{2}{{5}}} \right)}}{{1 - \frac{1}{2}}}\)

    \(=0.6\)
  • Question 16
    2 / -0.33

    Consider a differentiable function f(x) on the set of real numbers such that f(−1) = 0 and |f′(x)| ≤ 2. Given these conditions, which one of the following inequalities is necessarily true for all x ∈ [−2 , 2] ?

    Solution

    Given:

    f(-1) = 0

    |f’(x)| ≤ 2

    -2 ≤ f ’(x) ≤ 2

    Using Lagrange mean value theorem:

    \(f'\left( x \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)

    Since value of f (-1) = 0 is given, we take the interval [-1, 2], i.e.

    -2 ≤ f’(x) ≤ 2

    \(- 2 \le \frac{{f\left( 2 \right) - f\left( { - 1} \right)}}{{2 - \left( { - 1} \right)}} \le 2\)

    \(- 2 \le \frac{{f\left( 2 \right)}}{3} \le 2\)

    -6 ≤ f(2) ≤ 6

    We observe that option (a) satisfies this condition.

  • Question 17
    2 / -0.33

    Let M and N two n × n matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. 

    Which of the below-given statements is/are FALSE?

    Solution

    Concept:

    Properties of Rank:

    Rank of a matrix is the number of independent rows in the given matrix. Given two square matrices A and B of order n × n, we have following properties:

    1. Rank of product of A and B i.e. Rank (AB) ≥ Rank (A) + Rank (B) – order of square matrix

    2. Rank of sum of A and B i.e. Rank (A + B) ≤ Rank (A) + Rank (B).

    Properties of Determinant:

    Given two square matrices A and B of order n × n and their determinants Det(A) and Det(B) respectively, determinant of their product i.e Det( AB) = Det(A) * Det(B). However, the same does not hold for the addition of the given matrices.

    Example:

    Consider two square matrices A and B each of order 2×2.

    \(M = \left[ {\begin{array}{*{20}{c}} 2&1\\ 3&4 \end{array}} \right]\;\;\;\;\;\;Rank\left( M \right) = 2,\;\;Det\left( M \right) = 5\)

    \(N = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\;\;\;\;\;Rank\left( N \right) = 2,\;\;\;\;\;\;\;\;Det\left( N \right) = 1\)

    \(MN = \left[ {\begin{array}{*{20}{c}} 2&1\\ 3&4 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&1\\ 3&4 \end{array}} \right]\;\;\;\;\;\;\;\;\;\;\;\;\;\;Rank\left( {MN} \right) = 2,\;\;\;\;\;Det\left( {MN} \right) = 5\)

    \(M + N = \;\left[ {\begin{array}{*{20}{c}} 2&1\\ 3&4 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 3&1\\ 3&5 \end{array}} \right]\;\;\;\;\;\;\;Rank\left( {M + N} \right) = 2,\;Det\left( {M +N} \right) = 12\)

    Option 1 is TRUE.  

    Rank(M + N) = 2. Sum of rank of M and N is: 2 + 2 = 4. Therefore, the relation: Rank( M + N) ≤ Rank M) + Rank (N) holds true

    Therefore, the rank of the addition matrix is less than or equal to the sum of the rank of the individual matrices.

    Option 2: FALSE.

    The rank of product matrix MN is 2. Product of Rank(M) and Rank(N) is: 2*2 = 4. Therefore, the rank of the product matrix is not equal to the product of the rank of individual matrices.

    Option 3 is TRUE. 

    Det(MN)= 5 = Det(M) * Det(N)

    Option 4 is FALSE.  

    Det(M+N)= 12, which is greater than the sum of the determinants of individual matrices.

  • Question 18
    2 / -0.33
    A function f (x) is defined as \(g\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {{e^x},}&{x < 1}\\ {\ln x + a{x^2}+bx,}&{x \ge 1} \end{array}} \right.\), where x ϵ R. Which one of the following statements is TRUE?
    Solution

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {{e^x},\;x < 1}\\ {\log x + a{x^2} + bx,\;x \ge 1} \end{array}} \right.\)

    \(f'\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {{e^x},\;x < 1}\\ {\frac{1}{x} + 2ax + b,\;x \ge 1} \end{array}} \right.\)

    f’(1) = e, x < 1

    f’ (1) = 1 + 2a + b, x ≥ 1

    since f(x) is differentiable at x = 1,

    e = 1 + 2a + b → (1)

    At x = 1,

    f(1) = e, x < 1

    f(1) = a + b, x ≥ 1

    since f(x) is continuous at x = 1,

    e = a + b → (2)

    From (1) and (2)

    ⇒ 1 + 2a + b = a + b

    ⇒ a = -1

    ⇒ b = e + 1

    f(x) is differentiable at x = 1 for the unique values of a and b.
  • Question 19
    2 / -0.33

    Find the point at which absolute minima values lies for f(x) where x ϵ [4, 8]:

    \(f(x) = x^3 -18x^2 + 105x -10\)

    Solution

    \(f(x) = x^3 -18x^2 + 105x -10\)

    Diff w.r.t to x

    \(f'\left( x \right) = 3{x^2} - 36x + 105\)

    \(f''\left( x \right) = 6x - 36\)

    To find maxima or minima

    f'(x) = 0

    \(3{x^2} - 36x + 105 = 0\)

    \({x^2} - 12x + 35 = 0\)

    (x - 5)(x - 7) = 0

    ∴ x = 5 or x = 7

    If x = 5

    f'’(5) = -6

    f'’(5) < 0

    ∴ maxima may fall at 5 in the given domain

    If x = 7

    f'’(7) = 6

    f'’(7) > 0

    ∴ minima may fall at 7 in the given domain

    Check the boundary condition along with x = 1 and x = 2

    value of x

    f(x)

    4

    186

    5

    190

    7

    186

    8

    `190

     

  • Question 20
    2 / -0.33
    The integral of \(\mathop \smallint \limits_0^{{\bf{\pi }}/2} sin2x{\rm{log}}(\tan x)dx\) is given by -
    Solution
    Concept:

    The fundamental property of Definite Integral.

     \(\mathop \smallint \limits_0^{\bf{a}} f\left( x \right)dx\)  = \(\mathop \smallint \limits_0^{\bf{a}} f\left( {a - \;x} \right)dx\)     

    Calculation:    

    Given:

    \(I =\mathop \smallint \limits_0^{{\bf{\pi }}/2} sin2x{\rm{log}}(\tan x)dx\)

    Then, by using the above property, we get –

     \(I =\mathop \smallint \limits_0^{{\bf{\pi }}/2} sin\left( {2\left( {\frac{\pi }{2} - x} \right)} \right){\rm{log}}\left( {tan\left( {\frac{\pi }{2} - x} \right)} \right)dx\) 

     \(\Rightarrow I =\mathop \smallint \limits_0^{\frac{{\bf{\pi }}}{2}} {\rm{sin}}\left( {\pi - 2x} \right){\rm{log}}(\cot x)dx\) 

     \(\Rightarrow I =\mathop \smallint \limits_0^{\frac{{\bf{\pi }}}{2}} \sin \left( {2x} \right){\rm{log}}\left( {{{\left( {\tan x} \right)}^{ - 1}}} \right)dx\) 

     \(\Rightarrow I =\mathop \smallint \limits_0^{\frac{{\bf{\pi }}}{2}} {\rm{sin}}\left( {2x} \right)\left( { - 1} \right){\rm{log}}(\tan x)dx\)                    

     \(I = -\mathop \smallint \limits_0^{{\bf{\pi }}/2} sin2x{\rm{log}}(\tan x)dx\) 

    I = -I , 2I = 0

     \(I =\mathop \smallint \limits_0^{{\bf{\pi }}/2} sin2x{\rm{log}}(\tan x)dx\)  = 0  
  • Question 21
    2 / -0.33

    Let \(A = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}\\ { - 1}&2&0\\ 0&0&{ - 2} \end{array}} \right]\) and B = A3 – A2 – 4A + 5I, where I is the 3 × 3 identity matrix. The determinant of B is _______ (up to 1 decimal place).

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}\\ { - 1}&2&0\\ 0&0&{ - 2} \end{array}} \right]\)

    B = A3 – A2 - 4A + 5I

    |A - λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}} {1 - \lambda }&0&{ - 1}\\ { - 1}&{2 - \lambda }&0\\ 0&0&{ - 2 - \lambda } \end{array}} \right| = 0\)

    ⇒ (1- λ) (2 - λ) (-2 - λ) – 1 (0) = 0

    ⇒ λ = 1, λ = 2, λ = -2

    If λ is an Eigen value pf A, then λn will be an Eigen value pf An.

    If λ is an Eigen value of A, then A, then k λ will be an Eigen value of kA where k is a scalar.

    Eigen values of A are 1, 2, -2

    Eigen values of A2 are 1, 4, 4

    Eigen values of A3 are 1, 8, -8

    Eigen values of 4A are 4, 8, -8

    Eigen values of 5I are 5, 5, 5

    B = A3 – A2 - 4A + 5I

    λ1B = λ13 λ12 1 + 5 = 1 - 1 - 4 + 5 = 1

    λ2B = λ23 λ22 2 + 5 = 8 - 4 - 8 + 5 = 1

    λ3B = λ33 λ32 3 + 5 = -8 - 4 + 8 + 5 = 1

    Eigen values of B are 1, 1, 1

    Determine of matrix = product of Eigen values = 1
  • Question 22
    2 / -0.33

    Consider a 2 × 2 matrix \(M = \left[ {\begin{array}{*{20}{c}}{{v_1}}&{{v_2}}\end{array}} \right]\), where, v1 and v2 are the column vectors. Suppose \({M^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{u_1^T}\\{u_2^T}\end{array}} \right]\), where uT1 and uT2 are the row vectors. Consider the following statements.

    Statement: uT1v1 = 1 and uT2v2 = 1

    Statement: uT1v2 = 0 and uT2v1 = 0

    Which of the following options is correct?
    Solution

    Let matrix \(M = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\)

    \({v_1} = \left[ {\begin{array}{*{20}{c}}a\\c\end{array}} \right],\;{v_2} = \left[ {\begin{array}{*{20}{c}}b\\d\end{array}} \right]\)

    \({M^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\)

    \(u_1^T = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\end{array}} \right]\)

    \(u_2^T = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}{ - c}&a\end{array}} \right]\)

    \(u_1^T{v_1} = \frac{1}{{ab - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}a\\c\end{array}} \right] = 1\)

    \(u_2^T{v_2} = \frac{1}{{ab - bc}}\left[ {\begin{array}{*{20}{c}}{ - c}&a\end{array}} \right]\left[ {\begin{array}{*{20}{c}}b\\d\end{array}} \right] = 1\)

    \(u_1^T{v_2} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}b\\d\end{array}} \right] = 0\)

    \(u_2^T{v_1} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}{ - c}&a\end{array}} \right]\left[ {\begin{array}{*{20}{c}}a\\c\end{array}} \right] = 0\)

    Both the given statements are true.
  • Question 23
    2 / -0.33

    For the linear equation

    a + 3b – 2c = -1

    5b + 3c = -8

    a – 2b – 5c = 7

    determine which of the following statements is true?
    Solution

    The coefficient matrix of the given linear equation is

    \(\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 1&{ - 2}&{ - 5} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} a\\ b \end{array}}\\ c \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} { - 1}\\ { - 8} \end{array}}\\ 7 \end{array}} \right]\;\)

    \(let\;A = \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 1&{ - 2}&{ - 5} \end{array}} \right]\)

    order = 3

    Let the augmented matrix be

    \(X = \;\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 1&{ - 2}&{ - 5} \end{array}\left| {\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 7 \end{array}} \right.} \right]\)

    R3 → R3 – R1

    \(X \sim \;\;\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 0&{ - 5}&{ - 3} \end{array}\left| {\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 8 \end{array}} \right.} \right]\)

    \(X \sim \;\;\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 0&0&0 \end{array}\left| {\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 0 \end{array}} \right.} \right]\)

    Since Rank of A = Rank of X < 3

    Therefore, the system has infinitely many solutions.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now