Self Studies

Digital Logic Test 1

Result Self Studies

Digital Logic Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(X\;\# \;Y = \overline {\overline X.Y} \;then\;\overline {X\# Y} \;\# \;\overline X\) is equivalent to 
    Solution

    \(X\;\# \;Y = \overline {\overline X.Y} = X + \overline Y\)

    \(\overline {X\# Y} \;\# \;\overline X = \overline {X +\overline Y} \;\# ̅ X = \left( {\overline {X\;} .Y} \right)\;\# \;\overline X\)

    \( =\overline{ \overline {\overline X.Y\;} .\overline X} \)

     =  (X̅.Y  + X)    \\apply deMorgan's law

    = X + Y 

  • Question 2
    1 / -0
    If X = 0 in the logic equation, \(\left[ {X + Z\left\{ {Y + \left( {Z + \bar XY} \right)} \right\}} \right]\left[ {\bar Y + \bar X\left( {Z + Y} \right)} \right] = 0\) then
    Solution

    Laws of Boolean Algebra:

    All Boolean algebra laws are shown below

    Name

    AND Form

    OR Form

    Identity law

    1.A = A

    0 + A = A

    Null Law

    0.A = 0

    1 + A = 1

    Idempotent Law

    A. A = A

    A + A = A

    Inverse Law

    AA’ = 0

    A + A’ = 1

    Commutative Law

    AB = BA

    A + B = B + A

    Associative Law

    (AB)C

    (A + B) + C = A + (B + C)

    Distributive Law

    A + BC = (A + B) (A + C)

    A (B + C) = AB + AC

    Absorption Law

    A (A + B) = A

    A + AB = A

    De Morgan’s Law

    (AB)’ = A’ + B’

    (A + B)’ = A’B’

     

    Application:

    By putting X = 0, the above Boolean equation becomes

    \( \Rightarrow \left[ {0 + Z\left\{ {Y + \left( {Z + Y} \right)} \right\}} \right]\left[ {\bar Y + \left( {Z + Y} \right)} \right] = 0\)

    \( \Rightarrow \left[ {Z\left\{ {Y + Z} \right\}} \right]\left[ {1 + Z} \right] = 0\)

    ⇒ YZ + Z = 0

    ⇒ Z = 0

  • Question 3
    1 / -0

    Consider the following Boolean expression:

    \(\left( {\bar A + \bar B} \right)\left[ {\overline {A\left( {B + C} \right)} } \right] + A\left( {\bar B + \bar C} \right)\)

    It can be represented by a single three-input logic gate. Identify the gate.
    Solution

    \(\begin{array}{l}\left( {\bar A + \bar B} \right)\left[ {\overline {A\left( {B + C} \right)} } \right] + A\left( {\bar B + \bar C} \right)\\= \left( {\bar A + \bar B} \right)\left[ {\bar A + \left( {\overline {B + C} } \right)} \right] + A\left( {\bar B + \bar C} \right)\end{array}\)

    \(\begin{array}{l}= \left( {\bar A + \bar B} \right)\left[ {\bar A + \bar B\bar C} \right] + A\bar B + A\bar C\\= \bar A + \bar A\bar B\bar C + \bar A\bar B + \bar B\bar C + A\bar B + A\bar C\end{array}\)

    \(\begin{array}{l}= \bar A\left( {1 + \bar B\bar C + \bar A\bar B} \right) + \bar B\bar C + A\bar B + A\bar C\\= \bar A + \bar B\bar C + A\bar B + A\bar C\end{array}\)

    \(\begin{array}{l}= \bar A + A\bar B + A\bar C\\= \bar A + A\left( {\bar B + \bar C} \right)\end{array}\)

    \(\begin{array}{l}= \bar A + \bar B + \bar C\\= \overline {ABC} \end{array}\)

    The given Boolean expression represents NAND gate.
  • Question 4
    1 / -0

    What is the probability that the below-given f(x, y, z) will return 1?

    \(f\left( {x,\;y} \right) = \;\bar x + \bar y{\rm{\;}} + x.z\left( {\overline {x.\left( {y + z} \right)} } \right)\)

    where f(x, y, z) is a Boolean function. (answer upto 2 decimal places)
    Solution

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \bar x + \bar y{\rm{\;}} + {\rm{x}}.{\rm{z}}\left( {\overline {{\rm{x}}.\left( {{\rm{y}} + {\rm{z}}} \right)} } \right)\)

    De Morgan's Law

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {{\rm{x}}.{\rm{y}}} + {\rm{x}}.{\rm{z}}\left( {\bar x + \overline {\left( {{\rm{y}} + {\rm{z}}} \right)} } \right)\)

    De Morgan's Law

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {x.y} + {\rm{x}}.{\rm{z}}\left( {{\rm{\bar x}} + \left( {{\rm{\bar y}}.{\rm{\bar z}}} \right)} \right)\)

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {x.y} + {\rm{x}}.{\rm{z}}.{\rm{\bar x}} + {\rm{xz}}.{\rm{\bar y}}.{\rm{\bar z}}\)

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {x.y} + {\rm{x}}.{\rm{z}}.{\rm{\bar x}} + {\rm{x}}.{\rm{z}}.{\rm{\bar y}}.{\rm{\bar z}}\)

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {x.y} \; + 0 + 0\)  

    \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \overline {x.y} \)

    NAND Gate Truth Table:

    x

    y

    \(\overline {x.y} \)

    0

    0

    1

    0

    1

    1

    1

    0

    1

    1

    1

    0

     

    \(Probability\;of\;getting\;1 = \frac{3}{4} = 0.75\)

  • Question 5
    1 / -0

    The minimum Boolean expression for the following circuit is

    Solution

    A(B + C) + AB + (A + B)C

    = AB + AC + AB + AC + BC

    = AB + AC + BC
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now