Self Studies

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the matrix A7 × 5, B7 × 5 and C4 × 5. The order of [C(ATB)-1CT]T
    Solution

    If Ma × b Nb × c then (MN)a × c , that is, if order of M is a × b and order of N is b × c then order of MN is a × c.

    Order of AT: 5 × 7

    Order of CT: 5 × 4

    Order of (AT B) = [AT]5 × 7[B]7 ×5 = 5 × 5 = Order of (AT B)-1

    Order of [C (AT B)-1 ] = [C]4 × 5 [(AB)-1]5 × 5 = 4 × 5

    Order of [C (AT B)-1CT] = [C(AB)-1]4 × 5[CT]5 × 4 = 4 × 4

    Order of [C (AB)-1CT]T = 4 × 4

  • Question 2
    1 / -0

    Consider a 7 × 4 matrix  in which all the matrix element is equal to \(x\) where \(x\)is an integer?

    What is the rank of 7 × 4 matrix?

    Solution

    Maximum square can be form of order 4 × 4

    Rank ≤ 4 since all entries are 1, 

    ∴|any 4 × 4 submatrices | = | any 3 × 3 submatrices | = |any 2 × 2 submatrices | = 0

    only 1 × 1 or single entries are ≠ 0 

    ∴ rank = 1

    Explanation:

    \(A = \left[ {\begin{array}{*{20}{c}} x&x&x&x\\ x&x&x&x\\ x&x&x&x\\ x&x&x&{x} \end{array}} \right]\)

    Since all the rows are equal

    R2 → R- R1

    R3 → R- R1

    R4 → R- R1

    \(A = \left[ {\begin{array}{*{20}{c}} x&x&x&x\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{array}} \right]\)

    Therefore rank = 1

  • Question 3
    1 / -0

    For a matrix [M] \(= \left[ {\begin{array}{*{20}{c}} {\frac{3}{5}}&{\frac{4}{5}}\\ x&{\frac{3}{5}} \end{array}} \right]\), the transpose of the matrix is equal to the inverse of the matrix [M]T = [M]-1. The value of x is given by

    Solution

     [M]T = [M-1]

    Therefore M is the orthogonal matrix

     ∴ [M] [M]T = I

     \(\left[ {\begin{array}{*{20}{c}} {\frac{3}{5}}&{\frac{4}{5}}\\ x&{\frac{3}{5}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{3}{5}}&x\\ {\frac{4}{5}}&{\frac{3}{5}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}} {1}&{\frac{3x}{5}} +\frac{12}{25}\\ \frac{3x}{5}+\frac{12}{25}&x^2+{\frac{9}{25}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    so, \(\frac{{12}}{{25}} + \frac{3}{5}x = 0 \Rightarrow x = \frac{{ - 4}}{5}\)

    The value of x is \(\frac{{ - 4}}{5}\)

  • Question 4
    1 / -0

    Consider a matrix A which is singular

    \(A =\left[ {\begin{array}{*{20}{c}} 8&0&0&0\\ 9&{11}&13&{15}\\ 19&0&15&5\\ {11}&0&a&18 \end{array}} \right]\)

    What is the value of a?

    Solution

    Concept:

    Determinant of a singular matrix is 0

    Calculation:

    |A| = 0

    \(\left| {\begin{array}{*{20}{c}} 8&0&0&0\\ 9&{11}&13&{15}\\ 19&0&15&5\\ {11}&0&a&18 \end{array}} \right| = 0\)

     

    \(8 × \;\left| {\begin{array}{*{20}{c}} {11}&13&{15}\\ 0&15&5\\ 0&a&18 \end{array}} \right| = 0\)

    \(\therefore 8 × 11 × \;\left| {\begin{array}{*{20}{c}} 15&5\\ a&18 \end{array}} \right| = 0\)

    8 × 11 × (15 × 18 - 5a) = 0

    (15 × 18 - 5a) = 0

    5a = 15 × 18

    a =54

  • Question 5
    1 / -0

    What is the rank of the below given matrix?

    \(X = \;\left[ {\begin{array}{*{20}{c}}5&7&2&1\\1&1&{ - 8}&1\\2&3&5&0\\3&4&{ - 3}&1\end{array}} \right]\)

    Solution

    \(X = \;\left[ {\begin{array}{*{20}{c}}5&7&2&1\\1&1&{ - 8}&1\\2&3&5&0\\3&4&{ - 3}&1\end{array}} \right]\)

    R1 ↔ R2

    \(X \sim \;\left[ {\begin{array}{*{20}{c}}1&1&{ - 8}&1\\5&7&2&1\\2&3&5&0\\3&4&{ - 3}&1\end{array}} \right]\)

    R2 → R2 – 5R1

    R3 → R3 – 5R1

    R4 → R4 – 5R1

    \(X \sim \;\left[ {\begin{array}{*{20}{c}}1&1&{ - 8}&1\\0&2&{42}&{ - 4}\\0&1&{21}&{ - 2}\\0&1&{21}&{ - 2}\end{array}} \right]\)

    R3 → R3 – (R2 ÷ 2)

    R4 → R4 – (R2 ÷ 2)

    \(X \sim \;\left[ {\begin{array}{*{20}{c}}1&1&{ - 8}&1\\0&2&{42}&{ - 4}\\0&0&0&0\\0&0&0&0\end{array}} \right]\)

    Rank(X) = 4 – 2 = 2

    or

    \(\left| {\begin{array}{*{20}{c}}1&1\\0&2\end{array}} \right| = 2 \ne 0\)

    ∴ rank = 2

  • Question 6
    1 / -0

    Consider a 4 × 4 Matrix given below

    \(\left[ {\begin{array}{*{20}{c}} 4&16&1&{64}\\ 5&25&{1}&{125}\\ 8&64&{1}&{512}\\ 10&100&{1}&{1000} \end{array}} \right]\) 

    What is the determinant of the above matrix?

    Solution

    The determinant of the given matrix is

    \(\left| {\begin{array}{*{20}{c}} 4&16&1&{64}\\ 5&25&{1}&{125}\\ 8&64&{1}&{512}\\ 10&100&{1}&{1000} \end{array}} \right|\)

    C1 C3

    Determinant change by -ve

    \(-\left| {\begin{array}{*{20}{c}} 1&16&4&{64}\\ 1&25&{5}&{125}\\ 1&64&{8}&{512}\\ 1&100&{10}&{1000} \end{array}} \right|\)

    C2 C3

    Determinant change by -ve

    \(\left| {\begin{array}{*{20}{c}} 1&4&16&{64}\\ 1&5&{25}&{125}\\ 1&8&{64}&{512}\\ 1&10&{100}&{1000} \end{array}} \right|\)

    It is of the form

    \(\left| {\begin{array}{*{20}{c}} 1&a&{{a^2}}&{{a^3}}\\ 1&b&{{b^2}}&{{b^3}}\\ 1&c&{{c^2}}&{{c^3}}\\ 1&d&{{d^2}}&{{d^3}} \end{array}} \right|\)

    \({\rm{Δ }} = \left( {a\; - \;b} \right)\left( {a\; - \;c} \right)\left( {a\; - \;d} \right)\left( {b\; - \;c} \right)\left( {b\; - \;d} \right)\left( {c\; - \;d} \right)\)

    \(\)a = 4, b = 5, c = 8 and d = 10

    Δ = (4 - 5)(4 - 8)(4-10)(5-8)(5-10)(8 - 10)

    Δ = (-1) × (-4) × (-6) × (-3) × (-5) × (-2)

  • Question 7
    1 / -0
    The maximum value of the determinant among all 2 × 2 real symmetric matrices with trace 24 is _______.
    Solution

    Let the symmetric matrix be

    \(X=~\left[ \begin{matrix} b & a \\ a & c \\ \end{matrix} \right]\)

    ∴ |X| = bc – a2

    Since the given matrix is real, to get maximum determinant value of a should be equal to 0.

    b + c = 24

    c = 24 – b

    ∴ |X| = b × (24 – b)

    |X| = 24 b – b2

    Differentiating with respect to b

    |X|’ = 24 – 2b = 0

    ∴ b = 12

    |X|’’ = - 2 < 0

    At b = 12 it will have maximum value

    a = 24 – 12 =12

    Maximum value = 12 × 12 – 0 = 144 

  • Question 8
    1 / -0

    If \(A = \left[ {\begin{array}{*{20}{c}} 2&5&7\\ \lambda &{10}&{4\lambda - 2}\\ {\lambda + 4}&{4 + {\lambda ^2}}&{2{\lambda ^2} - 4} \end{array}} \right]\) then for what value of λ, rank of A is 1.

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}} 2&5&7\\ \lambda &{10}&{4\lambda - 2}\\ {\lambda + 4}&{4 + {\lambda ^2}}&{2{\lambda ^2} - 4} \end{array}} \right]\)

    Rank = Number of independent rows = 1

    That implies that two rows are dependent.

    R3 → R3 - 2R1

     \(A = \left[ {\begin{array}{*{20}{c}} 2&5&7\\ \lambda &{10}&{4\lambda - 2}\\ \lambda &{{\lambda ^2} - 6}&{2{\lambda ^2} - 18} \end{array}} \right]\)

    R3 → R3 - R2

    \(A = \left[ {\begin{array}{*{20}{c}} 2&5&7\\ \lambda &{10}&{4\lambda - 2}\\ \lambda &{{\lambda ^2} - 6}&{2{\lambda ^2} - 4\lambda - 18} \end{array}} \right]\)

    R2 → R2 - 2R1

    \(A = \left[ {\begin{array}{*{20}{c}} 2&5&7\\ {\lambda - 4}&0&{4\lambda - 16}\\ 0&{{\lambda ^2} - 16}&{2{\lambda ^2} - 4\lambda - 16} \end{array}} \right]\)

    For rank = 1, two rows should be zero.

    ⇒ λ = 4

  • Question 9
    1 / -0

    Given that

    \(M = \;\left[ {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&2\end{array}} \right];\;and\;I = \;\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\)

    the value of M3 is

    Solution

    Characteristic equation of given matrix

    \(\left| M \right| = \left| {\begin{array}{*{20}{c}}{ - 3 - \lambda }&4\\{ - 1}&{2\; - \;\lambda }\end{array}} \right| = 0\) 

    \(\left( { - \;3\; - \;\lambda } \right)\left( {2 - \lambda } \right) + 4 = 0\)

    \({\lambda ^2} + \lambda - 2 = 0\)

    \({\lambda ^2} = 2\; - \;\lambda\)

    \({\lambda ^3} = 2\lambda \; - \;{\lambda ^2}\)

    \({\lambda ^3} = 2\lambda \; - \;\left( {2\; - \lambda } \right)\)

    \({\lambda ^3} = 3\lambda - 2\)

    Every matrix satisfies its own characteristic equation

    \({M^3} = 3M - 2I\)

  • Question 10
    1 / -0
    Consider the determinant of the matrix \(A =\left[ {\begin{array}{*{20}{c}} 2&5&3\\ 7&8&{ 1}\\ 0&7&4 \end{array}} \right]\)  be \(x\), and the determinant of the matrix \(B =\left[ {\begin{array}{*{20}{c}} 0&7&4\\ 7&8&{ 1}\\ 2&5&3 \end{array}} \right]\) be \(y\) then the value of \(x\times y~?\)
    Solution

    \(|A| =\left| {\begin{array}{*{20}{c}} 2&5&3\\ 7&8&{ 1}\\ 0&7&4 \end{array}} \right| = 57\)

    \(|B| =\left| {\begin{array}{*{20}{c}} 0&7&4\\ 7&8&{ 1}\\ 2&5&3 \end{array}} \right|\)

    R3 ↔ R1

    \(-|B| =\left| {\begin{array}{*{20}{c}} 2&5&3\\ 7&8&{ 1}\\ 0&7&4 \end{array}} \right| \)

    -|B| = |A|

    ∴ |B| = -57

    \(x\times y = -57 \times 57 = -3249\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now